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1. Introduction 

The Internal Revenue Service (IRS) requires individuals and businesses to file annual income tax 
returns and related information returns for purposes of administering the income tax. These returns 
contain detailed information on the income, deductions, taxes, and credits of individuals and 
businesses. For individuals, these returns also provide key demographic information, such as 
taxpayers’ marital status, their number of children, and the age and gender of both taxpayers and 
dependents (available from the Social Security Administration). Administrative tax data are 
comprehensive because nearly all individuals in the United States are represented on an income tax 
return as a taxpayer or a dependent, and those who are not are generally represented on one or 
more information returns. Administrative tax data are of high quality because most taxpayers file 
returns that are quite complete and accurate, and because filing a false return (or failure to file a 
return) can result in severe penalties.  

The detailed, comprehensive, and high-quality administrative tax data are enormously valuable for 
analysis and research that can help inform the public about a wide range of issues. For example, 
analysts use information from actual tax returns to model the effect of current or proposed law on 
the distribution of tax burdens across income groups, on incentives to work or to make charitable 
contributions, and on other effects of the income tax. All such microsimulation models are based on 
a sample of tax returns that is weighted to represent the entire filing population, but only the 
Congressional Joint Committee on Taxation (JCT) and the Treasury’s Office of Tax Analysis (OTA) 
have statutory authority to use the confidential IRS administrative data in their models. The 
microsimulation models of other groups, such as the American Enterprise Institute and Urban-
Brookings Tax Policy Center, must rely on a sample that has been heavily edited to avoid disclosure 
of any individual taxpayer’s confidential information. Privacy protections are required by section 
6103 of the Internal Revenue Code, which strictly limits access to tax return information. Research 
based on tax return information is also circumscribed by the requirements of section 6103. For 
example, statistical research to estimate taxpayer’s behavioral responses to income tax parameters, 
such as the response of capital gains realizations to changes in tax rates, can only be performed 
directly by researchers in JCT and OTA or in collaboration with them, or through a highly restrictive 
arrangement with the IRS. 

We propose a two-part approach to expanding analysts’ and researchers’ access to tax data: (1) 
creating fully synthetic public use files–publicly releasable tax return datasets that replace all 
confidential administrative tax data with imputed data that protects the privacy of all taxpayers and 
preserves the relationships among variables necessary for valid analysis and research;1 and (2) 
developing a secure process by which researchers can submit statistical programs to be executed on 

                                                           
1 Burman, et al (2018) describe the current procedures the IRS uses to produce a public use file, outlines various 
synthesis methodologies and discusses the unique challenges of synthesizing tax return data. 
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the confidential administrative tax data that have been tested on the synthetic data, with all 
statistical results altered as necessary to protect taxpayer privacy. 

Many public datasets are now partially synthetic, with some sensitive variables replaced by imputed 
values. Variables are deemed sensitive if an intruder could match them with unique data available in 
another database. By matching the externally available data to the confidential database, a 
particular record could be identified, disclosing all the other information contained in that 
observation. Because partially synthetic data contain some actual data, they always carry a risk of 
disclosure, which grows as more data become publicly available to potential intruders. Our 
approach addresses this concern by proposing fully synthetic tax return databases.  

A number of synthesis techniques have been used in previous applications, including parametric 
(e.g., regression) and nonparametric models. One nonparametric method, classification and 
regression trees (CART), sorts observations into relatively homogeneous groups and draws from the 
empirical distribution of each group. The method is computationally simple and relatively flexible. 
We have used this method to date because CART out-performed regression-based parametric 
methods. 

We also propose to establish a secure method for researchers to submit statistical programs to run 
on a subset of the confidential administrative data. This model for research access to confidential 
data is referred to as a validation server. The synthetic dataset would have the same structure as the 
administrative data, so programs that are developed using the synthetic dataset would work on the 
confidential data with minimal alteration. Vilhuber and Abowd (2016) describe a system to provide 
access to the confidential version of the Survey of Income and Program Participation and receive 
statistical output after a privacy review by Census staff. We are exploring the creation of a similar 
system that would modify statistical outputs to guarantee privacy and preserve the statistical validity 
of estimates but without requiring human review. We will discuss the proposed validation server 
model in a subsequent paper. 

This paper describes a synthesis methodology that we have implemented and tested on a database 
of individuals who did not file and were not dependent of any individual income tax return in 2012. 
This file is called the 2012 Supplemental Public Use File. More information about the use of the file 
is available in 2012 Supplemental Public Use File (Internal Revenue Service, 2019). 

The underlying administrative data are the information returns filed by employers, financial 
institutions, the Social Security Administration, and other entities that pay income to individuals or 
have certain other transactions with individuals. Prior to our work, no public use file had been 
created from information returns.2 A synthetic version of these data would protect individuals’ 

                                                           
2 Several papers have analyzed the confidential administrative data on nonfilers and compared them with information 
in survey datasets. See Cilke (2014), Mok (2017), and Langetieg, Payne and Plumley (2017). All conclude that publicly 
available survey data provide biased estimates of the nonfiling population. 
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privacy while allowing researchers to gain a fuller picture of the distribution of income and tax 
burdens than one derived from income tax filing data alone. 

We show that the methodology protects privacy because it would be impossible for an intruder—
even if possessing extensive information about most records in the administrative dataset—to 
determine with certainty if a particular individual is in the underlying administrative data used to 
create the synthetic file. This means that the synthetic dataset does not disclose whether someone 
had or had not filed a tax return. Since the synthetic data are imputed, the methodology also 
protects against disclosure of any individual’s confidential information in the underlying 
administrative data. 

The paper is organized as follows. Section 2 defines privacy and disclosure, and summarizes the 
characteristics of our synthesis process that protect privacy. Section 3 defines data utility and 
summarizes how it is maintained by our synthesis process. Section 4 provides an overview of the 
CART synthesis method, and Section 5 provides a detailed description of the method. Section 6 
shows how our synthesis process protects privacy, including protections against disclosure of 
outliers and attribute disclosure. Section 7 describes the Supplemental Public Use File data and how 
we synthesized them. Section 8 describes measures of the privacy of synthetic data, and the results 
of applying these measures to the synthesized data. Section 9 describes data utility measures and 
applies them to the synthesized Supplemental Public Use File data. Section 10 offers conclusions 
and outlines our plans to extend this work to the production of a fully synthetic income tax return 
public use file. 

2. Privacy and Confidentiality 

A legal and moral imperative of this project is to protect the confidentiality of individual taxpayer 
information.3 Assessing the confidentiality of a dataset is challenging because threats to privacy are 
continually evolving. The following section provides some key definitions. Subsequent sections 
discuss privacy protection methods and standards that have been implemented or proposed.  

a. Some definitions 

Privacy may be defined as the ability “to determine what information about ourselves we will share 
with others” (Fellegi 1972). Confidentiality is “the agreement, explicit or implicit, between data 
subject and data collector regarding the extent to which access by others to personal information is 
allowed” (Fienberg and Jin 2009).  

Disclosure is the act of making confidential information known. There are several types of 
disclosures.  

Identity disclosure is when an intruder associates an individual with a specific record in the 
released data (Templ et al. 2019) and it discloses all the variables in the data set with respect 

                                                           
3 See National Research Council (1993) and Matthews and Harel (2011) for a discussion of data confidentiality and 
protecting privacy. 



4 
 

to that individual. This can be quite damaging. For example, an insurance company might 
increase insurance premiums for a participant based on information about health status 
inferred from a medical survey, a credit card company could increase interest rates for an 
individual based on data gleaned from a wealth survey, or a divorce lawyer might demand a 
larger settlement based on income data inferred from an income tax return. 

Attribute disclosure is when an intruder can determine certain characteristics of an individual 
based on information in the released data (Templ et al. 2019). This doesn’t necessarily 
require identifying an individual in the data. For example, if all individuals in a Census block 
are of one race and ethnicity, then it is possible to know the race and ethnicity of someone 
who lives in the block without identifying the individual in the data. While appearing less 
harmful, attribute disclosure can create some of the same damages as identity disclosure.  

Even without an identity or attribute disclosure, participants in a study may bear unintended costs. 
Wood et al. (2018) give the example of an individual who decides to participate in a medical study 
and discovers that she has a 50 percent chance of dying from a stroke in the next year. If an insurer 
extracted her data from the survey, her life insurance premiums would skyrocket. But even if her 
identity isn’t disclosed, her inclusion in the survey sample might increase the measured stroke risk 
for people like her. As a result, her life insurance premiums could increase even if her identity and 
individual data remain confidential.  

Notwithstanding the potential cost to a participant or others, improving the measurement of 
relationships among variables is not considered a disclosure. Otherwise, no statistical research using 
individual or household-level data would be permissible. 

b. Limitations of traditional methods for statistical disclosure  

To avoid disclosure, data stewards have relied on a variety of statistical disclosure limitation 
techniques. However, many standard statistical disclosure limitation techniques fail to eliminate 
disclosure risk (Dreschler and Reiter, 2010; Winkler 2007). In addition, these techniques may greatly 
reduce the usefulness of the released data for analysis and research. In particular: 

Adding random noise to continuous variables can maintain univariate distributions and prevent 
exact matches with external data sources. But adding random noise to sensitive variables creates 
measurement error in the perturbed variables that reduces the precision of statistical analyses and 
may introduce bias. (Yancey, Winkler, and Creecy, 2002) 

Data swapping is the exchange of sensitive values among sample units with similar characteristics 
other than the sensitive value. Mitra and Reiter (2006) found that a 5 percent random swapping of 
two identifying variables in the 1987 Survey of Youth in Custody invalidated statistical hypothesis 
tests in regression models that included those variables. Drechsler and Reiter (2010) found that even 
1 percent swapping of a subsample from the March 2000 U.S. Current Population Survey can 
undermine statistical inference. 
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Top and bottom coding combine all values above or below a threshold into a single value. For 
example, for the individual income tax return public use file (PUF), the IRS currently top codes 
number of children at three for married filing jointly and head of household returns, two for single 
returns, and one for married filing separately returns (Bryant 2017). Top coding doesn’t affect order 
statistics below where top coding begins and bottom coding doesn’t affect order statistics above 
where bottom coding begins, but top and bottom coding eliminate information about the tails of 
distributions and thus degrade analyses that require the entire distribution (Reiter, Wang, and 
Zhang, 2014; Fuller 1993).  

Aggregation combines multiple observations into one observation. The 2012 PUF aggregated 1,155 
returns with extreme values into four observations in the microdata (Bryant 2017). Aggregation 
doesn’t alter simple statistics such as sums or means, but it may bias estimates from more complex 
statistical models and distort microsimulation model analyses. Furthermore, aggregation of 
geographies may make small area estimation impossible and hides spatial variation (Reiter, Wang, 
and Zhang, 2014). 

c. Fully synthetic data and identity disclosure 

Fully synthetic data have the potential to avoid pitfalls of traditional statistical disclosure limitation 
techniques because the methods seek to replicate the data generation process of the confidential 
data while not disclosing the identity or attributes of any individual.  

Fully synthetic data protect against identity disclosure because no real observations are released 
(Rubin 1993; Reiter, 2002; Kinney, Satkarta, Reiter, Reznek, Miranda, Jarmin, and Abowd, 2011; Hu, 
Reiter, and Wang 2014; Raab, Nowok, and Dibben 2017). To quote Hu, Reiter, and Wang (2014), “it 
is pointless to match fully synthetic records to records in other databases since each fully synthetic 
record does not correspond to any particular individual.”  

Similarly, fully synthetic data protect against attribute disclosure because no actual values are 
released (Reiter, 2002). In addition, synthesized values limit an intruder’s confidence in any given 
value of a sensitive variable. For example, if an intruder identifies a set of records with identical 
values for a sensitive variable (a simple attribute attack), she still can’t confirm if the value is the 
truth.  

d. Potential disclosure risks in fully synthetic data 

If not carefully designed, fully synthetic data may still risk disclosing information (Raab, Nowok, and 
Dibben 2017). For example, overfitting the model used to generate the synthetic data might 
produce a synthetic file that is too close to the underlying data. In the extreme case, it is 
theoretically possible for a data synthesizer to perfectly replicate the underlying confidential data 
(Elliot 2014).  

The database reconstruction theorem (Dinur and Nissim 2003) proves that even noisy subset sums 
can be used to approximate individual records by solving a system of equations. If too many 



6 
 

independent statistics are published based on confidential data, then the underlying confidential 
data can be reconstructed with little or no error. 

The Census Bureau produced their own application of the database reconstruction theorem using 
the 2010 Census. Based on published tables, researchers at the Census Bureau recreated the 
unreleased swapped and unswapped microdata with about 50 percent accuracy. They then were 
able to correctly match a small fraction of the records in the recreated microdata to credit bureau 
data (Ruggles, 2018). This seems troubling, but there would be no way for an intruder to confirm if a 
match was correct or even if the reconstructed data were correct before the match.  

Under certain conditions, many of the same techniques used to reconstruct non-synthetic data 
might be used to reconstruct administrative data from fully synthetic data. Indeed, researchers have 
identified non-trivial disclosure risks in fully synthetic data processes (Hu, Reiter, and Wang 2014).  

To date, the only identified disclosure risks have been with respect to discrete variables and counts. 
Disclosure may be possible in the case of categorical variables that have a limited number of 
possible values, which means that they may be solved for with a finite set of simultaneous equations 
and a limited amount of information. Hu, Reiter, and Wang (2014) calculate re-identification risks on 
synthetic data in the American Community Survey. The authors were able to calculate posterior 
probability distributions for categorical variables based on the method used to synthesize the data.  

Disclosure risks are difficult to estimate on complex synthetic datasets such as a synthetic individual 
income tax return database. Raab, Nowok, and Dibben (2017) concluded that it was impractical to 
measure disclosure risk in the synthesized data from the UK Longitudinal Series: “Hu et al. (2014); 
Reiter et al. (2014); McClure and Reiter (2012) proposed other methods that can be used to identify 
individual records with high disclosure potential, but these methods cannot at present provide 
measures that can be used with (the) sort of complex data that we are synthesizing.” [p. 82] 

e. Differential privacy 

The database reconstruction theorem motivated research into formal privacy guarantees for 
synthetic data, such as ϵ-differential privacy. Differential privacy is a definition that creates a formal 
disclosure guarantee for a given algorithm such as a count or sum (Dwork, 2008). Only ϵ-differential 
privacy guarantees protection against an intruder with full information about the data protection 
process, knowledge of ϵ, and knowledge of all but one row of the confidential data (Abowd and 
Vilhuber 2008). More formally, ϵ-differential privacy requires establishing that the log of the ratio of 
the probability that any single observation was in the data set that generated the output to the 
probability it was excluded is less than ϵ. Machanavajjhala, et al. (2008) describe the intuition as 
follows: 

Differential privacy is a privacy definition that can be motivated in several ways. If an 
adversary knows complete information about all individuals in the data except one, the 
output of the anonymization algorithm [the synthetic dataset] should not give the adversary 
too much additional information about the remaining individual. Alternatively, if one 
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individual is considering lying about their data to a data collector (such as the U.S. Census 
Bureau), the result of the anonymization algorithm will not be very different if the individual 
lied or not. (p. 277) 

This definition assumes that the intruder has detailed data about all but one individual in the 
dataset. It would prohibit release of even very aggregate data; such as unaltered population means. 
A synthesis process that precisely reflected the distribution of the underlying tax data would also 
violate this standard since an intruder could replicate the synthesis process with all but one row of 
data and infer information about the missing row based on the difference between the two 
distributions. Perturbing the distribution by adding a small amount of noise or reducing the size of 
the synthetic dataset could protect data from most of the sample, but might not be effective for 
outlier observations. 

ϵ-δ-probabilistic differential privacy, is an extension of ϵ-differential privacy. It guarantees that ϵ-
differential privacy is met with probability 1- δ (Machanavajjhala, Kifer, Abowd, Gehrke, and Vilhuber 
2008). The probability that an intruder with full information about the data protection process, 
knowledge of ϵ, and knowledge of all but one row of the confidential data, could gain significant 
information about any individual’s data is at most δ.  

Several authors have attempted to develop fully synthetic datasets that satisfy differential privacy, 
but the data were of not of high quality. The Census Bureau’s “OnTheMap” application was 
designed to achieve ϵ-δ-differential, but with limited data quality (Machanavajjhala, et al., 2008). 
Elliot (2014) created a measure of “empirical differential privacy.” The measure makes assumptions 
about intruder knowledge and methods, so it does not satisfy ϵ-differential privacy. Kinney, et al., 
(2011) calculated ex post measures of privacy for individual variables in subgroups for the Synthetic 
Longitudinal Business Database (SynLBD). They confirmed that the SynLBD does not guarantee ϵ-
differential privacy. 

The usefulness and feasibility of differential privacy for microdata is currently under debate. McClure 
and Reiter (2012) found that the parameter ϵ is not closely related to the probability of disclosure. 
This is because differential privacy is based on algorithms and does not consider the specific values 
in a data set even though extreme values or uncommon combinations of values likely carry greater 
disclosure risk than common values or common combinations of values.  

In a critique of the Census Bureau’s use of differential privacy, Ruggles (2018) concluded, 
“Differential privacy requires protections that go well beyond [the Census Bureau’s] standard; under 
the new approach, responses of individuals cannot be divulged even if the identity of those 
individuals is unknown and cannot be determined. In its pure form, differential privacy techniques 
could make the release of scientifically useful microdata impossible and severely limit the utility of 
tabular small-area data.” 

f. The effects of sampling  
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Sampling limits disclosure risk because there is no guarantee that a targeted individual is in the 
sample before it is synthesized (Duncan and Lambert 1989; Fienberg, Makov, and Sanil 1997; Reiter 
2005b; Matthews and Harel, 2011). Skinner et al (1994) point out that: “Provided there is no 
measurement error, population uniqueness will be a sufficient condition for an exact match to be 
verified as correct.” One of the great advantages of working with federal administrative tax data is 
that sampling rates can be quite low while still producing a large, representative dataset. This means 
that the vast majority of records in the underlying administrative database are not in the sample. 

g. Our approach to protecting privacy 

We propose a synthesis methodology that protects against meaningful disclosure. We do not prove 
that our method satisfies differential privacy. Instead, we demonstrate that the synthetic data 
produced by the method protect taxpayer information from disclosure or statistically meaningful 
inference about taxpayer attributes. The synthetic data also do not disclose any useful information 
about any individuals, even in the case where an intruder has extensive information about the 
underlying data. 

Four aspects of the data and our proposed methodology protect against disclosure.  

• The administrative databases are very large. This means that a substantial amount of 
information may be released without allowing an intruder to infer anything useful about 
individuals unless they already possessed almost all the data. This alone does not meet the 
standard of differential privacy, where an intruder is assumed to possess all the records 
except one, but is a useful protection in more realistic scenarios where the intruder has 
incomplete information. 

• We propose to generate synthetic observations by drawing from smoothed empirical 
distributions, rather than the actual data. This smoothing process significantly reduces the 
likelihood that a data point in the synthetic data will exactly match an actual observation 
unless there are many observations with similar characteristics in the underlying data.  

• The synthetic dataset will have only a fraction (no more than 1 in 10) of the observations in 
the underlying administrative data. We show in Section 6 that this protects against 
meaningful disclosure about the idiosyncrasies of the underlying empirical distribution. 

• Previous research has focused on the special problems created by outliers.  Intruders often 
have more information about outliers and may have more to gain from identifying them. We 
propose a method that smooths the distribution of underlying data, preserving the empirical 
distribution for non-sensitive observations where the population density is high, and flattens 
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the distribution in the tails to only reflect the general characteristics of the outlier 
observations. This protects against inference of even very sensitive observations.4 

3. Data Utility 

Utility is the usefulness of the data for analysis and research. General utility is the similarity of 
statistical properties, such as univariate and multivariate distributions, of the confidential data and 
the synthetic data (Snoke et al., 2018). Specific utility is the similarity of analytic results, such as 
regression estimates or summary tables, from the confidential data and the synthetic data (Snoke et 
al., 2018). In Section 9, we present specific measures of data quality and apply them to the synthetic 
nonfiler data. 

4. Overview of Proposed Synthesis Methodology 

CART is a collection of non-parametric models developed by Breiman, Friedman, Olshen, and Stone 
(1984) and brought to synthetic data by Reiter (2005a). CART creates a sequence of binary splits of 
the data that end in nodes that are intended to be homogenous and have predictive power. CART 
uses classification trees for categorical variables and regression trees for continuous variables. 
According to Therneau and Atkinson (2019), a tree is built as follows: 

1. Find the variable that best splits the data into two groups. Split the data.  
2. Separately and for each subgroup, find the variable that best splits the data into two groups. 

Split the data.  
3. Continue this process until the subgroups reach a user-specified minimum size or until no 

improvement can be made.  
4. Optional: use cross-validation to reduce the full tree to avoid overfitting.  

We estimate CART models for each variable with all previously estimated variables as predictors. To 
create a synthetic record, a gender is assigned randomly, based on the percentage distribution of 
records in the first level groups (female and males). For example, because 51 percent of 
Supplemental Public Use File records are female, the synthetic record had a 51% chance of being 
assigned a female gender, and a 49% chance of being assigned a male gender. Then an age is 
assigned randomly, taking into account the gender already randomly assigned and the distribution 
of ages for that gender. For example, if the gender already randomly assigned was female, and 10 
percent of the females in the confidential data were between the ages of 25 and 30, there would be 
a 10 percent chance of assigning an age between 25 and 30 to the synthetic record. Other age 
groups would likewise have a random chance of being assigned, with all of the chances computed 
from the ages in the confidential data for females.  

                                                           
4 This approach is consistent with the advice of Machanavajjhala, et al. (2008): “We believe that judicious suppression 
and separate modeling of outliers may be the key since we would not have to add noise to parts of the domain where 
outliers are expected.” (p. 285) 
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After assigning gender and age, wage income is assigned using the estimated CART model for 
wages, taking into account both the gender and age already assigned. The process for synthesizing 
tax variables like wages is somewhat different, because the tax variables are continuous (can take on 
any dollar value), unlike gender and age groups which are discrete (can take on only a limited 
number of specific values). For continuous variables, we draw from a smoothed version of the 
empirical distribution function with variances for each value determined by the sparseness of where 
they belong in the overall distribution.  

5. Details of the Synthesis Procedure 

The procedure involves drawing from a variable’s smoothed empirical distribution and then deriving 
subsequent variables as a function of the previously synthesized values. The function could be 
estimated on the administrative tax data using parametric techniques such a multiple regression, 
but we have found that CART produces better results. For continuous variables—wages, interest, 
dividends, etc.—we use CART and draw from a Gaussian kernel density estimator fitted to the 
predicted values. This method smooths the distribution by filling in the gaps between observed 
values and is unbounded. Both smoothing and unbounding are desirable attributes as discussed 
below. For discrete values, such as age, we use CART without kernel density smoothing but top-
code the synthesized value if necessary to suppress information about outliers. For example, age is 
capped at 85 in the synthetic Supplemental Public Use File data. 

a. Overview of methodology 

Our synthesis methodology is based on the insight that a joint multivariate probability distribution 
can be represented as the product of a sequence of conditional probability distributions.  

𝑓𝑓(X1, X2, … , X𝑘𝑘 |𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑘𝑘)  =  
𝑓𝑓1 (𝑋𝑋1  |𝜃𝜃1)  ∙ 𝑓𝑓2 (𝑋𝑋2  |  𝑋𝑋1,𝜃𝜃2 )⋯  𝑓𝑓k (𝑋𝑋𝑘𝑘   |  𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑘𝑘−1,𝜃𝜃𝑘𝑘) 

where Xi , i = 1 to k, are the variables to be synthesized and θi are vectors of model parameters such 
as regression coefficients. 

b. Simulating discrete variables (X1 and X2) 

The first variable (X1) synthesized in the Supplemental Public Use File data is gender, which is simply 
split based on the distribution of gender in the administrative data, and randomly assigned based 
on this distribution. Age (X2) is the only other discrete variable. It is split into groups to minimize the 
heterogeneity of values within groups. To measure heterogeneity, the algorithm in our synthesis 
uses a Gini index  

𝐼𝐼(𝐴𝐴) = �𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)
𝐶𝐶

𝑖𝑖=1

 

where A is a node, C is the number of classes in the node (i.e. Male/Female), and 𝑝𝑝𝑖𝑖 is the class 
probability for the ith class (i.e. 0.65 are Female). So the best split minimizes  
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𝑁𝑁𝐿𝐿
𝑁𝑁
𝐼𝐼(𝐴𝐴𝐿𝐿) +

𝑁𝑁𝑅𝑅
𝑁𝑁
𝐼𝐼(𝐴𝐴𝑅𝑅) 

where 𝑁𝑁𝐿𝐿 and 𝑁𝑁𝑅𝑅 are the number of observations in the left and right nodes created by the split 
respectively, N is the number of observations in both nodes, and 𝐼𝐼(𝐴𝐴𝐿𝐿) and 𝐼𝐼(𝐴𝐴𝑅𝑅) are the Gini index 
in the left and right nodes respectively. Splits continue until there is no reduction in the 
heterogeneity or until the minimum size for a final node is reached (50).  

c. Simulating continuous variables (X3, X4, …, Xk) 

In CART, continuous variables are split and simulated using regression trees. The “best split” is 
defined by the split that minimizes the sum of squares in the two resulting nodes. This minimizes  

𝑆𝑆𝑆𝑆𝑆𝑆 = � (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝐿𝐿���)2
𝑖𝑖∈𝐴𝐴𝐿𝐿

+ � (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑅𝑅���)2
𝑖𝑖∈𝐴𝐴𝑅𝑅

 

where 𝐴𝐴𝐿𝐿 and 𝐴𝐴𝑅𝑅 are the left and right nodes created by the split respectively and 𝑦𝑦𝐿𝐿��� and 𝑦𝑦𝑅𝑅��� are the 
means of the left and right nodes respectively (Kuhn and Johnson, 2016). Splits continue until there 
is no improvement in the splitting criteria or until the minimum size for a final node is reached (50).  
Our synthesis samples values from the appropriate final node and then applies our smoothing 
method.  

To simulate the first continuous variable (X3, which is wages in the Supplemental Public Use File 
data), we create a smoothed kernel density function for each percentile of values predicted by CART 
for this variable.  

As shown in Figure 1, the kernel density estimator is the aggregation of individual normal densities 
centered around each observation (Wicklin 2016). In the example, each of the individual Gaussian 
kernels has the same standard deviation. The kernel density distribution is smooth and unbounded.  

We have to deal with some complications. First, the variance of the Gaussian kernel must grow with 
the tax variables. Otherwise, an intruder who knows how the database is constructed could draw 
some fairly precise inferences about outliers since any outlier observations in the synthetic dataset 
would likely be relatively close to an actual observation. We use percentile smoothing, which selects 
the variance based on the optimal variance for a kernel density estimator estimated on observations 
in the percentile for each observation. As discussed below this causes the variance to grow with the 
value of the synthesized variable.  

Variables that are a deterministic function of others, such as adjusted gross income or taxable 
income, will be calculated as a function of the synthesized variables. We do not calculate such 
variables for the Supplemental Public Use File data. 
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FIGURE 1 
Kernel Density Estimate as Weighted Sum of Component Densities 

 

6. How the Synthesis Procedure Protects Privacy 

The synthesis methodology draws values from a smoothed version of the empirical distribution 
function. As discussed above, the distribution is smoothed so that the probability of drawing any 
actual sample value is zero. However, there is a risk that the empirical distribution would be too 
close to the population distribution, revealing sensitive information about particular observations. In 
addition to smoothing, a key feature in our synthesis methodology is that we use only a fraction of 
the observations in the administrative dataset to generate the synthetic dataset. 

a. The effects of sampling on inference about the underlying distribution 

For the Supplemental Public Use File database, we start with a 10 in 9,999 (approximately 1 in 1,000) 
sample. That means that the odds are about 1,000 to 1 against any particular record from the 
population being in the sample. For the synthetic individual income tax return database, we plan to 
sample at different rates in different parts of the distribution. The synthetic file will be a stratified 
sample, with no portion of the dataset sampled at a rate higher than 1 in 10 (10 percent). 

For the synthetic individual income tax return database, selecting a sample size that is at least an 
order of magnitude smaller than the underlying population obscures the nature of the underlying 
distribution. To illustrate, suppose the actual distribution of data in the administrative dataset is 
uniform within an interval that includes 100 records. The actual distribution is the solid line in Figure 
2. An ideal synthesis would draw n independent observations from the uniform distribution within 
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this interval. 5 An intruder might attempt to infer the underlying distribution by ranking the 
observations from smallest to largest and plotting the empirical distribution function. The intruder 
could glean little information about the underlying distribution from this plot, especially if n is much 
smaller than 100.  

The probability that the kth observation, x(k), is less than z is �𝑛𝑛𝑘𝑘� �𝐹𝐹(𝑧𝑧)𝑘𝑘�1− 𝐹𝐹(𝑧𝑧)�𝑛𝑛−𝑘𝑘�. In the case of 

a uniform distribution on [0,1], F(z) = z, so the probability is simply  �𝑛𝑛𝑘𝑘� [𝑧𝑧𝑘𝑘(1− 𝑧𝑧)𝑛𝑛−𝑘𝑘].  The 

distribution of the kth order statistic of a random sample of size n, x(k), is approximately Beta(k, n – k 
+ 1). Using the Beta distribution, we can derive the confidence interval around each order statistic.  
If we draw 100 observations, the distribution of each point is Beta(k, 100 – k + 1), k = 1,…, 100.  If we 
use just 10 observations (a 1 in 10 sample), the distribution is Beta(k, 10 – k + 1), k = 1,…,10.   

Figure 2 shows the underlying uniform distribution (solid line) and the 95 percent confidence 
interval for samples of size 10 and 100. The blue shaded area corresponds to the sample of size 10 
and the dashed line represents the confidence interval for a sample of size 100. It is clear that many 
underlying distributions could be consistent with the sample distribution. 

 

FIGURE 2 
95 percent Interval Around Points Drawn from a Uniform Distribution Function with 1-in-10 
Draw versus 1-in-1 draw (n = 100) 

 

This simple example illustrates how the process of drawing only a fraction of the observations in the 
underlying database will obscure many idiosyncrasies in the underlying empirical distribution. 

                                                           
5  In practice, our use of a kernel density estimator to approximate the distribution would add some additional 
noise to any synthetic data. 
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b. Outliers 

Extreme values (outliers) are not close to uniformly distributed. Consider the most extreme case 
where all but one of the observations are at the minimum value and one is at the maximum, xm.  
How much could an intruder infer about xm?  To simplify the algebra, assume that the minimum 
value is zero.  (Alternatively, think of xm as the difference between minimum and maximum values.) 
Suppose that there are 100 observations, 99 of which are zero. 

Then, the mean is  

 µ = 𝑥𝑥𝑚𝑚
100

  (1) 

and the variance is 

 𝜎𝜎2 = ∑ (𝑥𝑥𝑖𝑖−µ)2

100
100
1  (2) 

=
99(−0.01𝑥𝑥𝑚𝑚)2 + (0.99𝑥𝑥𝑚𝑚)2

100
=
�0.99(0.01 + 0.99)�𝑥𝑥𝑚𝑚2

100
 

 = 0.99𝑥𝑥𝑚𝑚2

100
  

Just publishing the mean or variance for this subsample would disclose xm if an intruder knew that 
the other values were all zero because xm can be calculated as either 100 μ or �100𝜎𝜎2 . 99⁄ . 

Although this is a concern, our approach to simulating data by drawing from a kernel density 
estimator with variance σ2 addresses it.  

Suppose we draw a 1 in 10 sample from the population of simulated values. The mean, �̅�𝑥, has the 
following properties: 

 𝑆𝑆(�̅�𝑥) = µ = 𝑥𝑥𝑚𝑚
100

 (3) 

 𝑉𝑉𝑉𝑉𝑉𝑉(�̅�𝑥) = 𝜎𝜎2

10
 (4) 

Now publishing the mean does not disclose much about the outlier. There is a 90 percent 
probability that the outlier is not even in the database used to synthesize the data. The standard 
error other the mean will be quite large:  the square root of 𝑉𝑉𝑉𝑉𝑉𝑉(�̅�𝑥) from equation (4). Substituting 
from equation (2) yields the following: 

 𝑠𝑠𝑠𝑠(�̅�𝑥) = 𝜎𝜎
√10

= √0.99𝑥𝑥𝑚𝑚
10√10

= 0.0315 𝑥𝑥𝑚𝑚 (5) 

The best guess for 𝑥𝑥�𝑚𝑚 = 100�̅�𝑥. The standard error of this estimate is 𝑠𝑠𝑠𝑠(𝑥𝑥�𝑚𝑚) = 100𝑠𝑠𝑠𝑠(�̅�𝑥) = 3.15𝑥𝑥𝑚𝑚.  
That is, the standard error of an estimate of xm in this case is more than three times the actual value. 
Put differently, any synthetic sample that preserved the very high variance of the skewed sample 
would not reveal anything useful about the one outlier value. 
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In the other extreme case where all the values are approximately the same, the simulated values will 
be very close to the outlier values, but there is no disclosure because those values are not unique.  

c. Attribute Disclosure 

There are two types of tax return attribute disclosures of concern. One is revealing information 
about particular taxpayers based on unique combinations of attributes. The second is simply 
revealing that a person has filed a tax return, which the IRS treats as an impermissible disclosure. 

The synthesis methodology described here protects against both types of disclosure. As shown 
above, the synthesis will prevent an intruder from inferring any particular values on any individual’s 
tax return, even if the intruder possesses extensive information about the taxpayer’s other attributes.  
The probability of inferring rare combinations of attributes will be even smaller.  For example, in a 
bivariate distribution, rare pairings are in the relatively flat part of the distribution along with an 
enormous number of other equally improbable combinations that do not occur in the original 
dataset. Thus, observing a point such as x on Figure 3 below (contour lines for a bivariate normal 
distribution with ρ = 0.5) tells us virtually nothing about whether a point like x exists in the original 
data. And the figure vastly understates the sparseness of the distribution in the tails. There is more 
of a disclosure risk for discrete variables, such as age, but we address that by top coding. 

FIGURE 3 
Level Curves of Bivariate Normal Distribution with ρ = 0.5 

 

Notes: Simulated data of normal random variables with ρ = 0.5.  

The other type of disclosure is evidence of filing a tax return. The IRS has always viewed evidence 
that a return has been filed as disclosure of taxpayer information, which is prohibited under Internal 
Revenue Code Section 6103. If the IRS revealed that a person had not filed an income tax return, 
this would reveal information about that person’s income or evidence that the person might have 
violated the law, both of which would be meaningful disclosures that could potentially harm the 
individual. However, it would be impossible to infer from the synthetic income tax database that a 
person had not filed. Because the tax-filer database will be based on at most a 1-in-10 sample of 
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actual tax returns, there is at least a 90 percent chance that any particular tax return filed will be 
excluded from the sample. 

Synthesis should also make it highly unlikely that an intruder will infer that a particular person filed a 
return. The highest risk of identification in a non-synthetic sample would be for extreme outliers—
i.e., those with extremely high incomes or with rare combinations of attributes. As noted above, the 
synthesis methodology effectively addresses this source of disclosure risk. 

The synthetic Supplemental Public Use File database, described in the next section, is constructed 
from a 1-in-1000 sample. Applying the same attribute disclosure reasoning, it would be impossible 
to infer from it that a particular individual was in the Supplemental Public Use File dataset. 

7. Synthesizing the Low Income Supplement Sample Data  

Our main objective is to synthesize records from the IRS Master File to create a synthetic file similar 
to the current PUF released by SOI, but with more assured privacy protections. As a proof of 
concept and in an effort to release useful data that had never before been made public, we first 
created a fully synthetic file called the Supplemental Public Use File.  
 
We began with a definition of nonfilers from Cilke (2014), “Any U.S. resident that does not appear 
on a Federal income tax return filed [for] a given year.” We were not interested in people who are 
required to file but do not, so we excluded those with incomes above twice the filing threshold for 
married couples filing jointly (which varies depending on whether either or both spouses are age 65 
and older). Our sample is thus comprised of people who don’t file a Federal income tax return for a 
given year and do not appear to have an income tax filing requirement.6  
 
Our data source is a random 0.1 percent sample of Information Returns for Tax Year 2012 
maintained by the IRS Statistics of Income Division. Information returns are forms provided to the 
IRS by any business or other entity that pays income or has certain other transactions with an 
individual. Examples include the SSA-1099 filed by the Social Security Administration, W-2 filed by 
employers, and 1099-INT filed by banks and other financial institutions that pay interest. The sample 
is comprised of individuals whose SSN (Social Security number) or ITIN (individual taxpayer 
identification number for those without SSN) ends in one of ten four-digit combinations. The last 
four digits are randomly assigned at birth and range from 0001 to 9999. Thus, the sample is a 10 in 
9,999 (or approximately one in 1,000) random sample.7 
 

                                                           
6 Some self-employed people may not owe income tax but still be required to file a 1040 because they owe SECA 
payroll taxes (Langetieg, Payne and Plumley, 2017). We retain those people in the sample. 
7 The sample is called the Continuous Work History Sample (CWHS) and has been maintained by the IRS for many 
decades, although some of the ten digits were not selected in earlier years of the panel. The last four digits of SSNs and 
of ITINs are randomly assigned, but 0000 is never assigned. Thus, there are only 9,999 possible four-digit endings. 
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TABLE 1 
Percentage of Nonfilers with Specific Information Return Types (2010) 

Type Description 

Percent of 
nonfilers with one 
or more 
Information Return 
Types 

Percent of 
nonfilers with only 
one Information 
Return Type 

SSA-1099 Social Security Benefits. Includes 
Form RRB-1099 

55.9 34.6 

W-2 Wage and Tax Statement 24.7 9.2 
1099-INT Interest Income 15.6 3.0 
1099-R Distributions from Pensions, 

Retirement Plans, etc. 
14.3 0.7 

1099-G Certain Government Payments 11.1 3.4 
1098 Mortgage Interest Statement 9.9 0.8 
5498 Individual Retirement 

Arrangement Contributions 
7.9 0.6 

1099-
MISC 

Miscellaneous Income 7.8 2.8 

1098-T Tuition Statement 5.0 1.7 
1099-DIV Dividends and Distributions 4.3 0.8 
1099-B Proceeds From Broker and Barter 

Exchange Transactions 
2.6 0.1 

1098-E Student Loan Interest Statement 2.1 0.4 
W-2G Certain Gambling Winnings 1.2 0.2 
1099-C Cancellation of Debt 1.1 0.3 

Note: This table excludes specific Information Return types if held by less than one percent of 
nonfilers. 
Source: Table 2 in Cilke (2014). 
 
We deleted records for those who appear in the information return dataset who should not be 
considered nonfilers by dropping late filers, deceased persons, foreign residents, and individuals 
with large dollar amounts for certain items. After dropping a few more observations because of 
missing or invalid ages or genders, we ended up with an administrative dataset with about 26,000 
observations.  
 
We synthesized the data using a customized version of CART from the R package synthpop (Raab et 
al. 2019). synthpop contains multiple methods for creating partially-synthetic and fully-synthetic 
datasets and for evaluating the utility of synthetic data. It does not include any tools for evaluating 
the confidentiality or privacy of a synthetic data set.  

We use CART to partition the sample into relatively homogeneous groups, subject to the constraint 
that none of the partitions be too small, to protect against overfitting (Benedetto, et al., 2013). In 
testing on the Supplemental Public Use File database, we found that a minimum partition size of 50 
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produces a good fit with adequate diversity of values within each partition. Note that the optimal 
size may be different when synthesizing individual income tax return data.  

To develop the synthetic Supplemental Public Use File dataset, we start with the administrative 
dataset with 26,000 observations described above. First, we split the data into two parts. The first 
part is observations from the confidential data that have zeros for all seventeen tax variables.8 The 
second part is observations with at least one non-zero tax variable. For the sample with all zeros for 
tax variables, we randomly assign gender based on the proportions in the zero subsample (see 
below), synthesize age based on gender, and finally assign zeros to all tax variables.  

For the sample with at least one non-zero value for a tax variable, we choose gender—a binary 
variable—as X1. We do not synthesize gender, but randomly select gender based on the underlying 
share in the confidential dataset. With 51 percent female and 49 percent male in the administrative 
dataset, the assigned gender for each row in the synthetic dataset will have a 51 percent probability 
of female and a 49 percent probability of male. Due to the random assignment of gender, the 
distribution of gender in the synthetic dataset may differ slightly from the distribution of gender in 
the administrative data, but the difference is likely to be small given the sample size. 

We then use CART to assign ages (X2) to each record conditional on gender. Since the CART method 
selects values at random from the final nodes, the distribution may differ slightly from the 
distribution of age by gender in the administrative data, but the differences are likely to be small 
given the sample size. Age is top coded at 85 after synthesis.9 

For continuous variables, we start with the variable with the most non-zero values—wage income 
(X3), and then order the remaining variables, (X4, X5, …, X19), in terms of their correlations with wage, 
from most highly to least correlated.10 CART partitions the data into relatively homogeneous wage 
groups within each gender/age group, and randomly selects a wage value from all the values in that 
wage group. For all non-zero values, we replace values with a random value drawn from a normal 
distribution with a mean equal to the observation being replaced and variance equal to the optimal 
variance from a kernel density estimator estimated on the corresponding percentile of the 
distribution of the variable being replaced. This is a computationally efficient way to approximate a 
kernel density estimator and has the desirable feature that the error is much larger for the sparse 

                                                           
8 Note that this peculiarity is limited to the information return dataset of nonfilers, where a sizable percentage of 
records have zero values for all variables other than age and gender. The individual income tax return data should 
always include at least one non-zero value—otherwise there is no reason to file a tax return. 
9 Based on Census data, the age 85 cut-off groups together about two percent of the adult population (three percent of 
females and one percent of males). The percentages are probably a bit higher for nonfilers since people whose income 
comes mostly or entirely from Social Security generally do not have a filing requirement. 
10 Ordering from the variable with the most non-zero observations to the variable with the fewest non-zero 
observations is the norm for creating synthetic data, but we found that the correlation-order with wage worked better 
in preliminary tests. 
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parts of the distribution than dense parts of the distribution. It worked well for the Supplemental 
Public Use File database.11  

Further, the CART algorithm mixes up values across observations. This means, even without 
smoothing empirical distributions, uncommon combinations of zeros and non-zeros within a 
synthesized record may be an artifact of the synthesizer and not an attribute of the underlying 
confidential data. 

No noise is added to values of 0, which make up the majority of values for all continuous variables 
in the Supplemental Public Use File data. We don’t consider zeros to be a disclosure risk because 
the variable with the most non-zero values is 73 percent zeros. Many of the variables are zero for 
almost every record. By default, synthpop does not smooth values if the frequency of a single value 
exceeds 70 percent.  

Subsequent variables (X4, X5, …, Xk) are synthesized in a similar way to X3, by using CART to predict 
values based on random draws from the kernel density estimator of observations with similar 
characteristics.  

Classification trees and regression trees for prediction tend to over-fit data, which can increase out-
of-sample prediction error. So, most trees are reduced based on a penalty for the number of final 
nodes in the tree (Kuhn and Johnson, 2016). We only reduce our trees in extreme cases because our 
minimum bucket size is large (50) and the default parameter for penalizing complex trees in 
synthpop is small. 

8. Measures of How Well the Synthetic Supplemental Public Use File Data Protects Privacy 

Our methodology is designed to protect confidentiality ex ante. However, we also use a set of 
privacy metrics to test whether the CART method might produce values that are too close to actual 
values or reveal too much about relationships between variables. We used these metrics to adjust 
the precision of the synthesis, by adjusting smoothing methods and parameters like the minimum 
size of the final nodes in the CART synthesizer.  

We focus on three different types of metrics. The first type counts the number of unique donors to 
each row in the synthetic data. The second type examines the frequency and uniqueness of 
synthesized rows in the confidential data. The third type applies a formal privacy framework called ℓ-
diversity to the CART synthesizer. 

a. Unique donors 

                                                           
11 The nonfiler database is relatively homogenous so percentile smoothing works well. The file of individual income tax 
returns has some records with extremely large values. We expect to use a standard kernel density estimator that draws 
from the distribution of records in the neighborhood of each value. This will automatically add enough noise to make it 
impossible to distinguish one outlier from another (or to determine if any outlier observation is in the administrative 
dataset), as described above. 
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Before smoothing, the CART synthesizer combines actual values for tax variables from many 
different rows in the confidential data into a single row in the synthetic data. This process of 
shuffling up real values (before smoothing) from many records into a new synthesized record is an 
important part of our method. It’s easy to imagine a synthesizing method that is too precise and 
creates synthetic rows from a few rows or one row in the confidential data–though it’s difficult to 
imagine implementing such a precise synthesizer. As a check, we trace the number of unique rows 
in the confidential data that “donate” values to the synthetic data. This definition is a little loose 
because nothing is donated in our method; rather, we trace every observation with a unique 
identifier through the synthesis process to ensure that the data are adequately shuffled.  

We found the minimum number of unique donors to each observation of the synthetic dataset. 
There are 19 variables in the Supplemental Public Use File dataset (17 tax, 2 demographic). The 
maximum number of possible “donors” to any given row of the synthetic data is thus 19. The 
minimum number of unique donors in the Supplemental Public Use File dataset is 15.  

b. Duplicates 

We examined several metrics of the frequency and uniqueness of synthesized rows in the 
confidential data. As we showed above, no rows are actually duplicated. Instead the rows appear 
duplicated because the combination of synthesized variables from the synthesizer combine into a 
row that has the same values as a row in the confidential data.  

The simplest metric is a count of rows in the unsmoothed synthetic data that match rows from the 
confidential data–but this is not particularly informative for two reasons. First, many rows have 
values for age, sex, and then all zeros for the tax variables. The probability of duplicating these rows 
is high but does not carry any disclosure risk. Second, there are frequent rows that occur in the 
confidential data that would be expected to appear as replicated in the confidential data by chance.  

c. Number of unique-uniques 

The count of unique-uniques is the number of unique rows from the confidential data that are 
unique in the unsmoothed synthetic data. This narrows the focus to rows that are uncommon and 
could carry some inferential disclosure risk.   

d. Row-wise Squared Inverse Frequency 

Finally, we relax the uniqueness requirement and instead use a measure based on frequency. For 
any given row in the unsmoothed synthetic data, this metric counts the number of identical rows in 
the confidential data. It then squares the inverse of this metric so that rows that appear once are 
assigned a value of 1, rows that appear twice are assigned a value of ¼, rows that appear three 
times are assigned a value of 1/9, and so on. With all of these measures, it is important to remember 
that the confidential data being synthesized come from a 10/9,999 sample of tax records. So even if 
low probability rows are included in the data, it is unlikely that they are unique in the population.  
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The results for duplicates, unique-uniques, and row-wise inverse frequency were all very small and 
thus are not reported below.  

e. ℓ-diversity of final nodes in the CART algorithm 

We were concerned that the CART algorithm could generate final nodes that lack adequate 
heterogeneity. Too little heterogeneity in the final nodes could result in too much precision for the 
synthesizer. To ensure adequate heterogeneity, we applied ℓ-diversity (Machanavajjhala, Kifer, and 
Gehrke, 2006) to the decision trees created by the CART algorithm. 

ℓ-diversity is an extension of k-anonymity (Sweeney, 2002). Let a quasi-identifier be a collection of 
non-sensitive variables in a dataset that could be linked to an external data source. Let a q*-block 
be a unique combination of the levels of quasi-identifiers. A q*-block is ℓ-diverse if it contains at 
least ℓ unique combinations of sensitive variables.  

We apply this formal measure to the CART algorithm where the trees create the discretized space 
formed by quasi-identifiers, the final nodes are q*-blocks, and the sensitive values are the values in 
the final nodes. We examine the minimum ℓ-diversity in a data synthesizer and the percent of 
observations that came from final nodes with ℓ-diversity less than 3. In many cases, the minimum ℓ-
diversity is 1 because some final nodes only contain zeros. We consider this to be acceptable 
because zeros carry negligible disclosure risk. 

9. Measures of the Quality of the Synthetic Supplemental Public Use File Data 
 

a. General utility metrics 

Correlation fit measures how well the synthesizer recreates the linear relationships between 
variables in the confidential dataset. Correlation fit is the lower triangle of a Pearson’s linear 
correlation matrix from the synthetic data minus the lower triangle of a Pearson’s linear correlation 
matrix from the confidential data. The difference matrix can be used to calculate two useful metrics. 
Values close to zero provide one measure of general utility in the synthetic data and are the result 
of similar correlation matrices from the synthetic and confidential data sets. 

First, we rank the differences between each pair of variable from smallest to largest. Variable pairs 
with large distances indicate a poor job capturing the linear relationship (or lack thereof) between 
those two variables. Second, we can average the Euclidean distances between the pairs of variables 
in the confidential dataset and the synthetic dataset. This gives a general synthesis-wide number 
that measures how well the synthesis is capturing linear relationships.  

 

FIGURE 4 
Example Calculation of Correlation Fit 
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Let S and O be the correlation matrices corresponding to the synthetic and original data, 
respectively. The correlation fit is the average of distance between elements in the lower triangles of 
the two matrices. 

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑠𝑠𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 𝐹𝐹𝐶𝐶𝐶𝐶 =  
�∑ ∑ �𝑆𝑆𝑖𝑖𝑖𝑖 − 𝑂𝑂𝑖𝑖𝑖𝑖�

2𝑖𝑖
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=2

( )2𝑛𝑛
 

The Kolmogorov-Smirnov test is a nonparametric test of the equivalence of univariate probability 
distributions. For synthetic data, the Kolmogorov-Smirnov test statistic and its associated p-value 
can be used to compare the distribution of an actual confidential variable and its synthesized 
counterpart. The null hypothesis is that the distributions are identical; a high p-value indicates that 
the null hypothesis that the two distributions are identical cannot be rejected. 

The two-sample KS-test compares the empirical cumulative distribution functions for two samples. 
Let 𝐼𝐼(−∞,𝑥𝑥𝑖𝑖](𝑋𝑋𝑖𝑖) be an indicator function for the variable of interest. The empirical cumulative 
distribution function (ECDF) for the first sample, 𝐹𝐹𝑛𝑛,1, for n independent and identically distributed 
ordered observations is 

𝐹𝐹𝑛𝑛,1 =  
1
𝑛𝑛
�𝐼𝐼(−∞,𝑥𝑥𝑖𝑖](𝑋𝑋𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

 

The ECDF for the first sample, 𝐹𝐹𝑚𝑚,2, for m independent and identically distributed ordered 
observations is 

𝐹𝐹𝑚𝑚,2 =  
1
𝑚𝑚
�𝐼𝐼(−∞,𝑥𝑥𝑖𝑖](𝑋𝑋𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

 

The Kolmogorov Smirnov statistic for the above samples and ECDFs is 
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𝐷𝐷𝑛𝑛,𝑚𝑚 = sup |𝐹𝐹𝑛𝑛,1(𝑥𝑥) − 𝐹𝐹𝑚𝑚,2(𝑥𝑥)|. 

This Kolmogorov Smirnov test essentially finds the largest absolute vertical distance between the 
two ECDFs and measures the probability that it occurred by chance.  

FIGURE 5  
Example Kolmogorov-Smirnov Test  

 

The null hypothesis is rejected at level α if  

𝐷𝐷𝑛𝑛,𝑚𝑚 >  �−1
2

ln (α)�𝑛𝑛+𝑚𝑚
𝑛𝑛𝑚𝑚

. 

If the test statistic is greater than the critical value, then we reject the null hypothesis that the 
samples come from the same underlying distributions. Figure 5 demonstrates the visual difference 
between a good synthesis with a modest test statistic and a poor synthesis with a large test statistic. 

pMSE is a statistical test that estimates whether a model can distinguish between the confidential 
and the synthetic data. Woo et al. (2009) introduced and Snoke et al. (2018) enhanced a propensity 
score measure for comparing distributions and evaluating the general utility of synthetic data. 
Propensity scores are probabilities of group membership introduced by Rosenbaum and Rubin 
(1983). The propensity score measure for general utility models group membership between the 
original and synthetic data as a measure of distinguishability. Low distinguishability corresponds 
with high general utility. The procedure is as follows: 
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1) Combine the rows of the confidential data set and the rows of the synthetic dataset 
into one dataset. Add an indicator variable with 0 for the confidential data and 1 for 
the synthetic data.  

2) Calculate propensity scores to estimate the probability that a row in the combined 
data set belongs to the synthetic data set. The propensity scores are modeled with a 
logistic regression. The predictors are all variables in the combined data without 
interactions. Interactions up to a specified maximum order of interactions are 
possible, but estimation struggles to converge. Alternatively, a CART model can be 
used to estimate the propensity scores.  

3) Calculate the probability expected if the data did not distinguish the synthetic data 
from the original data. The probability expected is the proportion of synthetic data in 
the combined data. In most cases this will be 0.5 because the confidential data set 
and the synthetic data set usually have the same number of rows.  

4) Finally, calculate the utility statistic. The utility statistic is the mean squared difference 
between the calculated propensity scores and the probability expected if the data did 
not distinguish the synthetic data from the original data. 

Let pMSE be the utility statistic propensity score mean squared error. Let N be the number of rows 
in the combined data set. Let 𝑝𝑝𝚤𝚤�  be the estimated propensities. Let 𝑝𝑝0 be the probability expected 
(typically 0.5).  

𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆 =
1
𝑁𝑁
�(𝑝𝑝𝚤𝚤� − 𝑝𝑝0)2 

 

We focus on the p-values from a test with the null case of synthesizing data from the correct 
generative model of the original data. Failure to reject the null case suggests high general utility. 
The test statistic is a function of the pMSE and sample sizes. Let 𝑛𝑛1 be the number of observations in 
the original dataset. Let 𝑛𝑛2 be the number of observations in the synthetic dataset. Let 𝑁𝑁 =  𝑛𝑛1 + 𝑛𝑛2. 

𝐶𝐶𝑠𝑠𝑠𝑠𝐶𝐶 𝑠𝑠𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝑠𝑠 = 𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆 𝑁𝑁3 𝑛𝑛2
𝑛𝑛12

 

The null distribution of the test statistic is χ2 with degrees of freedom equal to the number of 
parameters involving synthesized variables in the propensity score minus 1. 

b.  Specific utility metrics 

Regression Confidence Interval Overlap (Karr et al 2006) is a measure of the overlap between 
confidence intervals for each coefficient in a model estimated on the original data and a model 
estimated on the synthetic data. The overlap is calculated with the following where “o” and “s” 
denote the confidence interval bounds for the original and synthetic data: 

𝐼𝐼𝑂𝑂 = 0.5(
min(𝑢𝑢𝑜𝑜,𝑢𝑢𝑠𝑠) − max (𝐶𝐶𝑜𝑜, 𝐶𝐶𝑢𝑢)

𝑢𝑢𝑜𝑜 − 𝐶𝐶𝑜𝑜
+

min(𝑢𝑢𝑜𝑜,𝑢𝑢𝑠𝑠) −max (𝐶𝐶𝑜𝑜, 𝐶𝐶𝑢𝑢)
𝑢𝑢𝑠𝑠 − 𝐶𝐶𝑠𝑠

) 
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A value of 1 corresponds with perfect overlap between the intervals. A value of zero corresponds 
with no overlap but adjacent confidence intervals. Negative values correspond to the distance 
between intervals when the intervals don’t overlap. Figure 6 demonstrates a great overlap, a good 
overlap, and a poor overlap. 

FIGURE 6 
Example Confidence Interval Overlap 

 

The synthetic Supplemental Public Use File dataset will be used for tax microsimulation. We built a 
tax calculator to compare calculations of AGI, personal exemptions, deductions, regular income tax, 
and tax on long-term capital gains and dividends based on the confidential data and the synthetic 
data.  

The tax calculator uses a simplified version of 2012 law, the year of the confidential and synthetic 
data. The calculator assumes that all individuals are single filers, it does not include any tax credits, it 
turns off the standard deduction, and it lowers the personal exemption to $500. This unorthodox 
combination of rules is necessary to get useful calculations using the Supplemental Public Use File 
data, which come from a population that pays federal income tax only through withholding by 
payers of wages and other income.  

We will now focus on the utility of the synthetic Supplemental Public Use File data to illustrate.  
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TABLE 2 
Count of Genders by Data Source 

Gender Original Synthetic 
Female 13,669 13,567 
Male 13,274 13,263 

 

 

TABLE 3 
Count of Age Groups by Data Source 

Age 
Group 

Original Synthetic 

1-17 856 815 
18-24 2,299 2,296 
25-34 2,811 2,734 
35-54 6,136 6,143 
55-64 3,956 3,946 
65+ 10,885 10,896 

 

TABLE 4 
Count of Age Groups by Gender and Data Source 

Age 
Group 

Gender Original Synthetic 

1-17 Female 414 369 
1-17 Male 442 446 
18-24 Female 1,030 1,002 
18-24 Male 1,269 1,294 
25-34 Female 1,093 1,036 
25-34 Male 1,718 1,698 
35-54 Female 2,514 2,571 
35-54 Male 3,622 3,572 
55-64 Female 1,913 1,897 
55-64 Male 2,043 2,049 
65+ Female 6,705 6,692 
65+ Male 4,180 4,204 

 

Table 2, table 3, and table 4 are based on all observations in the released synthetic dataset including 
rows with zeros for all seventeen tax variables. All subsequent tables, figures, and metrics exclude 
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rows that have zeros for every tax variable. This makes comparisons easier and we are most 
interested in observations with non-zero values for tax microsimulation and analysis.  

c. Summary statistics 

The synthesis recreates the univariate distribution of the tax variables. Figures 7, 8, 9, and 10 
respectively compare the mean, standard deviation, skewness, and kurtosis of the tax variables in 
the synthetic data set with the tax variables in the confidential data set. The four figures exclude any 
zeros.  

 

FIGURE 7 
Means from Original and Synthetic Data 

Note: Calculations exclude all zeros. 
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FIGURE 8 
Standard Deviations from Original and Synthetic Data  

 

Note: Calculations exclude all zeros. 
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FIGURE 9 
Skewness from Original and Synthetic Data  

 
Note: Calculations exclude all zeros. 
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FIGURE 10 
Kurtosis from Original and Synthetic Data 

 

Note: Calculations exclude all zeros. 

d. CDF analysis 

The Kolmogorov-Smirnov tests and zero coverage also suggest that we do a good job recreating 
the univariate distributions of the tax variables. Age failed the Kolmogorov-Smirnov test because of 
top coding but passes without top coding. Interest received fails the Kolmogorov-Smirnov test 
because of rounding but passes without rounding. No other variables failed the Kolmogorov-
Smirnov test and as figure 11 shows, none of the p-values is near common cutoffs of 0.01, 0.05, or 
0.1. 
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FIGURE 11 
P-Values from Two-Sample Kolmogorov-Smirnov Tests on Original and Synthetic Data 

 
 
Note: Calculations exclude rows with zeros for all seventeen tax variables. 
 
The synthesizer also did a good job recreating the share of zero values. As figure 11 shows, all 
variables are within about 1 percent of the correct number of zeros.  
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FIGURE 12 
Percentage of Values that are Zeros in the Synthetic Data Relative to the Original Data 

 
Note: Calculations exclude rows with zeros for all seventeen tax variables. 
 

e. Correlation fit 

 
The synthesizer does a good job recreating the linear relationships between variables. Overall, the 
correlation fit was 0.0013. Figure 13 shows the correlation difference between every combination of 
tax variables. Most differences are close to zero. Taxable dividends, qualified dividends, tax-exempt 
interest, and long-term capital gains all have correlation differences that are not close to zero. This 
is not surprising since these variables have very few non-zero values and are uncommon sources of 
income for nonfilers. We do not consider this a cause for concern but it is an area for future 
improvement.  
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FIGURE 13 
Correlation Differences (Synthetic minus Original) 

 
Note: Calculation excludes rows with zeros for all seventeen tax variables. 
 

f. pMSE 

The p-value of the pMSE with main effects and no interactions or higher-order terms is 0.26. This 
means we fail to reject the null hypothesis which suggests it is difficult to distinguish between the 
confidential and synthetic data. This all suggests high general utility.  
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g. Confidence interval overlap 

 
The synthesizer performs adequately for our measure of regression confidence interval overlap. 
Figure 14 compares the coefficient estimates and error bars for a regression with wages as the 
dependent variable and all other variables as independent variables. The figure is broken into three 
sections to ease visual comparisons. Most of the estimates are very close. The two estimates with 
negative overlaps are at least directionally correct and are comparable in magnitude. 
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FIGURE 14 
Regression Confidence Interval Overlap 

 
Note: Calculation excludes rows with zeros for all seventeen tax variables. 
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h. Tax calculator 

The main use of the synthetic Supplemental Public Use File dataset will be tax microsimulation. The 
synthetic file performs well in our simple tax calculator and approximates the results from the 
confidential data set. Figure 14 compares results for the original and synthetic data sets across 
different Adjusted Gross Income (AGI) groups for count, mean tax, and total tax.  
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FIGURE 15 
Tax Calculator Results for the Original and Synthetic Data 

 
Note: Calculation excludes rows with zeros for all seventeen tax variables. 
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10. Conclusions and Planned Future Work 

This paper outlines a method to create a fully synthetic database that would not allow an intruder 
with extensive knowledge to meaningfully update his or her prior distribution about any variable on 
a tax return or even about whether someone had or had not filed a tax return beyond statistical 
relationships between variables. We have implemented this for the Supplemental Public Use File 
database and found that the resulting synthetic dataset replicates the characteristics of the 
underlying administrative data while protecting individual information from disclosure. 

Our next step is to create a synthetic dataset of the much more complex and diverse individual 
income tax return data. We do not know, a priori, how well the synthesis methodology used for the 
Supplemental Public Use File data will replicate the underlying distributions of these data. We plan 
to test a range of synthesis methods, including random forests (which performed less well than 
CART for the Supplemental Public Use File data, but could outperform CART for the individual 
income tax return data). At a minimum, our goal is to find a method that will create a synthetic file 
that protects the privacy of individuals and reproduces the conditional means and variances of the 
administrative data. We hope it will be useful for estimating the revenue and distributional effects of 
tax law changes, and also be useful for exploratory statistical analysis.  

Perhaps most importantly, because the synthetic dataset will have the same structure as the 
underlying administrative data, it will serve a valuable purpose as a “training dataset” that 
researchers could use to develop and debug complex statistical programs in R or Stata. If we are 
successful in establishing a validation server, then researchers will be able to submit their programs 
to run on a subset of the restricted data. This could significantly expand research access to a vital 
information resource. 
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