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he Gaussian curvature of the surface at point is stages However if the Gaussian curvature is differ-

the product of the maximum and minimum cur- ent then the two surfaces will not be isometric For ex
vatures in the family The objective of this paper ample sphere and plane are not locally isometric be-

is to provide deeper and broader understanding of the cause the Gaussian curvature of sphere is nonzero

meaning of Gaussian curvature using more general al- while the Gaussian curvature of plane is zero This is

temative computational methods We define the coeffi- why any map of portion of the earth must distort dis

cients of the expected Fisher Information Matrix as the tances

coefficients of the first fundamental form Four differ

ent formulas found in Struik 1961 are used although In this paper we define the coefficients of the ex

we do not intend to compare the superiority of these pected Fisher Information Matrix as equal to the coeffi

formulas in computing the Gaussian curvature We found cients of the first fundamental form There are numer
that all four formulas can compute the Gaussian curva- ous authors who have used this concept including

ture effectively and successfully This is demonstrated Bamdorff-Nielsen et al.1986 87 equation 3.1 or

with three common examples 4.1 and Kass and Vos 1997 189 Using these

defined metric tensors we can then adopt the same no-

Introduction
tation and apply the formulas listed in Struik 1961
The Gaussian curvature then becomes function of the

The Gaussian curvature of the surface at point
coefficients of the first fundamental form and their first

is the product of the extreme values of curvatures in
and second derivatives

the family If is point on regular surface in R3 and

Kp is positive then the two curvatures have the same
In this paper we also suggest the following four

sign and point is called an elliptic point of the sur
systematic steps to compute the Gaussian curvature Step

face If Kp is negative then the two curvatures have
1-compute the coefficients of the expected Fisher Infor

opposite signs and point is called the hyperbolic point
mation Matrix or coefficients of the first fundamental

of the surface Examples in this paper demonstrate these

form namely EF and Step 2-compute the needed
cases If exactly one curvature equals zero then point

first or second derivative of EF and and thus the six
is parabolic point of the surface If the Gaussian cur

Christoffel symbols Step 3-apply formula which
vature equals zero then the surface is either planar or

developer
necessitates in the computation of the mixed Riemann

curvature tensors
121

an the subsequent121

Computing the Gaussian curvature plays central compu-tation of the inner product of this tensor with the

role in determining the shape of the surface It is also metric tensor or results in the covariant Riemann

well-known fact that two surfaces which have the same curvature tensor 12 12 Step 4-observe that the Gaussian

Gaussian curvature are always isometric and bending curva-ture has very simple relation to Riemann sym
invariant For instance Struik 1961 120 pro-

bols of the second kind By adhering to this procedure

vided an excellent example that demonstrated cone- the correct Gaussian curvature will be calculated In the

spondence between the points of catenoid and that of case where F0 or the parametric lines on the surface

right helicoid such that at corresponding points the are not orthogonal the computational procedure can be

coefficients of the first fundamental form and the extremely tedious It is always prudent to find proper

Gaussian curvatures are identical In fact one surface transformation to form an orthogonal system of para

can pass into the other by continuous bending This metric lines in order to simplify the computational pro-

has been demonstrated by the deformation of six differ- cedures
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Notation and Terminology The Formula

In this section we define the basic notations and In this section we select four formulas that can be

terminologies that will apply in the next two sections used to compute the Gaussian curvature

These notations and symbols can also be found in

Struik 1961 or Gray 1993 First and foremost
iaI ia

we define the coefficients of the first fundamental form _-.-
E-E_ F-E In EU GU

ävôu 4EGF22 EV F\

and G-E __ GuFv ___ FuEv
3v2 2EG_F2 EGF EG_F2

where fuv are two parameters of the probability den

sity functions It is clear that EF and are functions of

the parameters and The expectations apply to the

whole sample space where the random variables are
where D2 EG F2

defined We also assume that the regular conditions of

the information metrics are all satisfied The details of
______ 1212

these five conditions are summarized in Kass 1997 EG F2 EG F2

185 section 7.4.1 Next we define the six well-known
where 1212 I2I2

Christoffel symbols see Struik 1961 107 equa- m1

tion 2-7 or Gray 398 as follows .-r rmr1
ijk ik jk ik mj jk mi

GE 2FFU FE EG FE

2EGF2
12 2EGF2

2EF EE FE11 2GFV GG FG sum on

2EG F2
22

2EG F2 where the quantities of Uk are components of tensor

GE FG
r2

EG 2FFV FG11 of the fourth order This tensor is called the mixed Ri-

12

2EG F2
22

2EG F2 emann curvature tensor Notice that g11 g12 and g22

are simply tensor notations for EF and Formula

Since and are functions of parameters uv was developed by Frobenius while formula was

and are continuously twice differentiable EUEVFUFVG derived by Liouville Clearly formula is special

and all exists and are all well-defined Because FO case that is valid only when the parametric lines are or-

formula turns out to be simplified form of Gausss thogonal Formula is general form represented in

Equation In 1997 Kass used formula to corn- Riemann symbols of the first and second kind respec

pute the Gaussian curvature of trinomial and families tively In formula I212 the inner product of the

In the next section we will demonstrate that formulas mixed Riernann curvature tensor and the metric tensor

and are heavily dependant on the six Christoffel is called the covariant Riernann curvature tensor it is

symbols Additionally no assumption is made regard- covariant tensor of the fourth order The components

ing F0 and so the parametric lines are not necessarily and 1212 are also known as Riemann symbols of

orthogonal However if F0 the six Christoffel sym- the first and second kind respectively Notice that Ri
bols can be greatly simplified The three distributions emann symbols of the second kind will satisfy the rela

discussed here belong to this case
tion 12I2 1221 2112 2121 the well-known
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ON COMPUTING THE GAUSSIAN CURVATURE OF SOME WELL-KNOWN DISTRIBUTIONS

property of skew-symmetry with respect to the last two the methods of finding those with negative Gaussian

indices It is useful to be aware of the fact that the curvature Kass 1997 192 theorem 7.4.6 gave

Christoffel symbols depend only on the coefficients of the general form of location-scale manifold of den-

the first fundamental form and their derivatives The sity

same holds true for the mixed Riemann curvature ten

sor From this point of view as long as we can find the

pxf--IuvERxR
coefficients of the first fundamental form of given dis-

tribution and their first and second derivatives we can

uniquely define the corresponding Christoffel symbols for some density function Then the information met-

and hence mixed Riemann curvature tensors Thus the nc of the Riemannian geometry space has constant nega

process of computing the covariant Riemann curvature tive curvature We provide the derivation of the formula

tensor and Gaussian curvature is simplified From dif-
for the Gaussian curvature of normal distribution in ex

ferent perspective we know that the mixed Riemann
ample Cauchy distribution in example and family

curvature tensor will link with the coefficient of the distribution in example
second fundamental form namely efand

by91 g2eg f2 Example Let be location scale manifold of

12 22 density that has the following general form
where EG F2 EG F2 EG F2

The above relation can then be easily used to derive

I212 eg f2 and the result will coincide with equation exp
u2

uv ER

7-3 of Struik 1961 83 the original funda

mental definition of Gaussian curvature These points

convince us that formulas and basically define where is the location parameter and is the scale pa-

the same quantity but only in different forms The rea- rameter We also assume that the regular conditions of

son why only formula was selected for presentation the information metric are satisfied The first and sec

is due to the following two facts to avoid repetition ond partial derivatives with respect to parametric lines

of Kass 1997 189 when FO formulas and are given as

and are trivially similar to formula For example

in formula we may substitute the following equa-
52 In In 3x u2

tion on the left-hand side r--
1EV -E

2G
or

It is commonly known that the expected value and

r2
Gu variance of the random variable are and v2 respec

12

2G
tively From this we could easily derive the coefficient

We can immediately calculate the same results as
of the first fundamental form

found from formula while formula results in

Riemann representation In this way we have supplied

some more general alternative methods to compute the

Gaussian curvature including the case when

as well as their corresponding derivatives with respect
Three Examples

to the parametric lines and

In this section we give the details of three examples i- i-
and demonstrate how we could apply formula to

cOmpute our Gaussian curvature The three examples EG -4- and

will deal with the location-scale family of densities and EG
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Substituting the listed results into formula The derivatives of the coefficients of the first fun-

or it should be easy to compute the Gaussian curva- damental form and six Christoffel symbols are all

ture obtaining Again we present the details for for- straightforward computations Due to the fact that the

mula only We can derive
Cauchy distribution is the same as the normal distribu

tion that is 12 we use formula

3-2 2r2 to derive the Gaussian curvature
121 11 21 11 11 22

1212 21G 121 r1i- r1r2

EG
1212 V4 4v4

EG v4
1212

m1

Example LetQ2 be the location- scale manifold I212 4v_i2
of density which has the following general form EG 2v4

fx Example Let be the location-scale manifold

It v2 u2 of density that has the student distribution and gener

ally has the form

where is the location parameter and is the scale pa
rameter The logarithm of the likelihood function of r1
Cauchy density with one observation can be written as fx

lnfln_lnv2 xu2
it

IXER uveRxR
As before we can derive the first two partial de

rivatives with respect to the parametric lines and

where is location parameter and is scale parameter

a2 In u2 v2 Let us define the following variables to simplify the

xu2 v2 notation

a2lnf -I 2v2-xu2 ri
___ _______

3v2 v2 v2 x-u2 cr

a2lnf -4vxu
avau v2 xu22

Then the logarithm of likelihood function of family

Taking the expected values of equations we fi can be written as follows

nally get the following results

xu
lnfxlncrbln1a lnv

E_Eômnf__ FEa lnf0 and
3u2 2v2 auav

Ea lnf From equation we can derive the first and sec
i2 212 ond partial derivatives
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ON COMPUTING THE GAUSSIAN CURVATURE OF SOME WELL-KNOWN D1sTIrntrrIONs

the end of the century including Euler and Monge
a2 in 2abax u2 v2 hadusedtheGaussiancurvaturebutonlywhendefined

ôu2 ax u2 v22 as the product of the principal curvatures Since each

principal curvature of surface depends on the particu
a2 lnf

lar way the surface is defined in R3 there is no obvious

reason for the product of the principal curvatures to be

intrinsic to that particular surface Gausss work in 1827
6ax u2v21 ax u2v2 4a2bx u4v4

that the product of the principal curvatures depends only

ax u2v22
on the intrinsic geometry of the surface revolutionized

differential geometry Gauss wrote The Gaussian cur-

a2 In 4abv
vature of surface is bending invariant. most ex

avau ax u2 v22 cellenttheorem.. ThisisaTheoremaegregium Jnthis

theorem Gauss proved that the Gaussian curvature

We can now take the expected values of and of surface depends only on the coefficient of the first

have the following results fundamental form and their first and second derivatives

This important geometric fact will link the concepts of

_a In

2ab bending and isometric mapping By bending invariant

au2 v2r v2r we mean that it is unchanged by such deformations of

the surface when restricted to limited region that does

a2 In

not involve stretching shrinking or tearing When mea

avau

sured along curve on the surface the distance between

two points on the surface is unchanged The angle of

the two tangent directions at the point is also unchanged

_Ea In
11

Thispropertyofsurfacesexpressibleasbendinginvari

av2 ant is called the intrinsic property We would like to

conclude this study by repeating Kasss 19891997

favorite and most interesting piece of trivia Suppose
It now becomes routine procedure to compute the

we ask which distribution in the family is halfway be-

derivative of the coefficient of the first fundamental form
tween Normal and Cauchy on the statistical curvature

and six Christoffel symbols Compute the Riemann SYIm scale the scale of sufficiency loss of the Maximum Like
bols of the first and second kind respectively Thus the

lihood Estimator For Normaly and for Cauchy
Gaussian curvature is calculated

Thus we seek such that There
22

Ô12 -r is no reason why should turn out to be an integer it

av
2rv merely has to be number greater than Since

for Cauchy and for Normal the answer is

1212
Thus in the sense of the insufficiency of the MLE as

mI v4r measured by statistical curvature the on degrees of

freedom is halfway between Normal and Cauchy This

I212 means that the statistical curvature of the
t3

distribution

EG 2r is the arithmetic mean of the statistical curvatures for

the Cauchy and Normal distributions From the Gaussian

Concluding Remarks curvature that we derived in this paper we showed that

in the Normal distribution we obtain and in

One of the most important theorems of the 19th cen- Cauchy distribution we obtain while in fam

tury is Theorema Egregium Many mathematicians at ily distribution with degrees of freedom we get
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In other words the Gaussian curvature Efron 1975 Defining the Curvature of Statisti
2r

of the
t3

distribution is the geometric mean of the curia- cal Problem with Applications to Second Order

tures for the Cauchy and Normal distribution Thus we Efficiency Annual Statistics pp 1189-12 17

conclude that whether one uses statistical or geometric

mean curvature the
t3 may be considered halfway in

Gray 1993 Modern Differential Geometry of

Curves and Surfaces CRC Press Inc
between Normal and Cauchy distribution

Kass and Vos 1997 Geometrical
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