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statistics often play central role in opti places for sample sizes up to 40 and 10 decimal places

mal statistical inference procedures In current for sample sizes up to 50 From the results listed above

literature there are many papers with tabula- we have no doubt that the Gaussian Distribution is the

tions of expected values variances and covariances of most commonly used distribution and these moments or

order statistics with samples drawn from the Gaussian product moments are needed

Distribution However none deals wi.th.the similarprob

lem when sample is drawn from the Inverse Gaussian Recently the Inverse Gaussian Distribution has re

IG Distribution In both theory and application the IG ceived increased attention At first this distribution had

Distribution has received more attention in recent years been used to answer questions relating to the physical

phenomenon of Brownian motion Hadwiger 1940 ap
M.Y Chan A.C Cohen and B.J Whitten 1983 plied the Inverse Gaussian density function as the solu

gave three-parameter IG distribution with zero mean tion to functional equation in his study of reproduc

and unit variance and tabulated the cumulative probabil- tion function associated with biological population

ity function as function of the standardized variate Later this curve was referred to as the Hadwiger fertil

and of the shape parameter In this study we adopt ity curve by Hoem and Berge 1975 Tweedie noted

their standardized IG cumulative distribution function and the inverse relationship between its cumulant generating

with the same selected shape parameter 0.00.12.5 we functions and those of the Gaussian Distribution and

tabulate the mean variance and covariance of order coined the name Inverse Gaussian Distribution This

statistics up to sample size 25 Using these tabulated distribution has also been studied extensively by numer

values we can establish the best linear unbiased esti- ous investigators detailed list is in reference

mates of the location and scale parameters Finally the noteworthy investigator is Seshadri 1993 see ref

variances and covariances of these parameters are tabu- erence covering both theoretical and applied work

lated in this area of study In reference 1983 the au

thors compare the I.G distribution with the most corn-

Introduction monly used lifespan distributions such as the exponen

tial the lognormalthe gamma and the Weibull distribu

The computation of theoretical means variances tion It has been suggested that the I.G distribution can

covariances and correlation of order statistics in small be useful alternative They derived standardized

samples from Gaussian Distribution dates back as early probability density function with zero mean unit van-

as Jones 1948 and Godwin 1949 Later Teichroew ance and shape parameter The cumulative distribu

1956 extended sample sizes to 20 and gave lO-deci- tion function as function of standardized variate and

mal-place accuracy Yamauti 1972 provided 8-deci- as the shape parameter were then tabulated That ap

mal-place tables of product moments for sample sizes proach is the foundation of this study producing the

of up to 30 G.L Tietjen D.K Kahaner and R.J means variances and covariances of the order statis

Beckman 1977 have computed variances and covari- tics of this important distribution However only deci

ances of the normal order statistics for sample sizes up ma places of accuracy are presented We would ex
to 50 Most recently R.S Parrish 1992 applied pect that the table will be widely used throughout the

Gauss-Legendre Quadrature technique and gave 25 deci-
industry for quality control By making use of the means

mal places of the means of normal order statistics for variances and covariances of order statistics tabulated

sample sizes up to 500 He also constructed table of in the tables we can also compute the coefficients for

variances and covariances of normal order statistics of the best linear unbiased estimators of the location and

25 decimal places for sample sizes up to 20 15 decimal scale parameters of Inverse Gaussian Distribution and
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variances and covariances of these estimators in cases ond method applied Gauss-Legendre quadrature tech-

of complete or type II right censored samples nique by using 96 lattice points while the last approach

is the same as previous one but increased to 512 lat

Basic Formulas tice points The mathematical analysis in error bounds

using this method has been discussed in detail in refer

M.Y Chan A.C Cohen and B.J.Whitten 1983 ence section 2.1 or 2.2 It has been determined

gave three-parameter version of the I.G distribution that the maximum error will not exceed order of l0
with parameters where is the origin .t is the Hence only the fmal approximated results are presented

mean and is the standard deviation They then de- in our tables

rived standardized distribution with mean zero unit vari

ance and shape parameter where is the third stan- Numerical Computation
dard moment Thus zx-p.y/cr and the probability

density function becomes All computations were performed in double preci

sion by Fortran 77 on the HP 9000/755 model computer

fz 01 k- 1_ exp system The single integrals of equations were evalu

ii ated by usingthe 512-point Gaussian quadrature formula

2.1 over different lengths of intervals Except in the normal

case i.e shape parameter k0 the lower bound of the

where -3/k zero elsewhere From 2.1 they integral is easy to determine by computing -3/k For

can derive the cumulative distribution function of the stan- example for the shape parameter k0 we can use

dardized I.G.distribution It subsequently follows that -30 as our lower bound If the shape parameter yields

1.5 then we use -2.0 as our lower bound All other

.q z_1 cases can easily be determined However there are no

kz/3 kz/3 rules for us to determine the upper limits for given

2.2 shape parameter By tabulating 2.2 as in the work

by the three authors 1983 we determine values such

where is the cumulative standardized normal distri-
that the cumulative functions are equal to As ex

bution As we can see from 2.2 they have expressed pected when the shape parameter increases the distri

the cumulative distribution function of the standardized bution has gradually turned out to be very long thin

I.G distribution as the sum of two cumulative standard-
upper tail For examplewhen k2.5 the upper limit could

ized normal components It is not difficult to show from reach 55 covering the whole distribution range How-

basic analysis that ask -0 the cumulative distribution
ever we must be very careful about the range of double

function of2.2 will approach the standardized normal
integral due to the fact that it is dependent variable In

distribution Using the density function of2.1 and Cu- other words the lower limit of is while the lower

mulative distribution function of 2.2 we can start to limit of is -3/k depending on The upper limit of

construct our single and product moments of the Inverse will be dependent upon tabulation and If we ignore

Gaussian Distribution The general fundamental defini- the dependency of the two variables it could cause some

tions of these moments are given in reference For
negative association as is very close to This is not the

example our definition of expected values of order sta- case in our selected shape parameters When this prob

tistics for given sample sizes is formula 5.2.1 on lem was studied we used the power-series approach

page 108 the definition of variance is formula5.2.2 on first This only led to two-digit accuracy when com

page 108 and the definition of covariance is formula pared with the mean values of three/four digits in the

5.2.4 on page 108 Clearly theoretical integration of covariance approximation Hence we switched to the

these formulas without the aid of computer is intrac- 96 Gauss-Legendre quadrature formula Improvement

table Thus numerical method is necessary Three was dramatic In normal cases the means or covari

different numerical methods have been applied The ances coincided with R.S Parrishs published results

first method used power series approximation the sec- When sample sizes grow large there is huge
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combinatoric integer value to be multiplied by the result Similarly using five randomly selected shape parameters

of the double integration Usually the 96 points formula sample sizes and randomly selected index and we

can lead to 13-digit accuracy but if say seven-digit in- can easily see that the Balakrishnan 1989 identity

teger numbers are multiplied then only six-digit accu- has been matched It is fun to use these formulas and to

racy is achieved The second cause of inaccuracy is check our tabulated values We encourage readers to

the increasing shape parameter as the distribution gradu- try some Listed below are the identities used

ally evolves to be long thin upper tail However 96

lattice points are evenly distributed over the integral do
IJ n1 4.1

main causing more area or volume loss in the lower tails

than in the upper tails It is clear that we need more

points in the lower tails to compensate for this loss One For n-i

of the best ways to make up for this defect is by in- ni 4.2
creasing the number of lattice points We are pleased

with this final approach During the computation of the For 4.3

mean variance and covariance we have written one
ii n1 a_1-

short calling program with eight subfunctions or subrou-

tines In the main program we only read in the preas

signed exponential values of nij and pass these values
Equation Skewed Sample Index Both sides of

to subfunctions to compute each possible combination
Used Parameter Sizes Used Equation equal

of the power of probability density function or cumula-
4.2 1.2 15 -1.21918

tive functions All the computations use double preci-
4.2 1.5 15 -1.75030

sion formats to ensure that at least the first ten digits are
4.2 2.0 20 10 -4.92265

accurate With this accuracy of the tabulated mean
4.2 2.5 25 20 15.33447

variances and covariances as our basis the best linear

unbiased estimation of location and scale parameters for
4.3 0.2 19 i5 j6 1.465 62

both completed or type II right censored samples could
4.3 0.6 20 i7 j8 1.17180

reach the desired accuracies
4.3 1.2 10 i5 j7 0.87064

4.3 1.5 15 ilOj13 1.45909

Verification
4.3 2.1 20 i8 jl4 0.52172

We used at least fifteen different identities or recur-
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currence relation of expected values of 4.2 and we Chan M.Y Cohen A.C and Whitten B.J 1983
randomly selected four different shape parameters and The standardized inverse gaussian distribution

sample sizes to verif the table mean values Equation table of the cumulative probability function

4.3 is the most powerful identity to use to check the Communication In Statistics Simulation and

interrelation between the mean values and covariances Computation pp 423-442
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Expected Values of Inverse Gaussian Order Statistics

Shape Parameter

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000

.56419 .56399 .56341 .56244 .56110 .55940 .55735 .55498

.56419 .56399 .56341 .56244 .56110 .55940 .55735 .55498

.84628 .84140 .83595 .82996 .82346 .81649 .80908 .80129
.00000 .00918 .01833 .02741 .03638 .04522 .05389 .06238
.84628 .85058 .85428 .85736 .85984 .86171 .86298 .86367

1.02938 1.01985 1.00969 .99894 .98764 .97585 .96363 .95105

.29701 .30604 .31472 .32302 .33093 .33840 .34544 .35202
.29701 .28767 .27806 .26821 .25816 .24797 .23765 .22727

1.02938 1.03822 1.04635 1.05375 1.06040 1.06629 1.07142 1.07580

1.16296 1.14928 1.13493 1.11998 1.10450 1.08856 1.07223 1.05558

.49502 .50214 .50873 .51474 52017 .52501 .52926 .53291
.00000 .01188 .02371 .03545 .04706 .05849 .06971 .08068

.49502 .48737 .47924 .47065 .46165 .45227 .44256 .43256

1.16296 1.17593 1.18813 1.19952 1.21008 1.21979 1.22863 1.23661

Variances and covariances of Inverse Gaussian Order

Statistics Shape Parameter

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

.68169 .65372 .62628 .59947 .57335 .54801 .52348 .49981

.68169 .71010 .73886 .76785 .79698 .82614 .85524 .88417

.55947 .52555 .49293 .46169 .43187 .40353 .37668 .35132

.44867 .44833 .44732 .44564 .44332 .44038 .43686 .43279

.55947 .59459 .63082 .66802 .70608 .74485 .78421 .82402

.49172 .45581 .42172 .38949 .35915 .33069 .30411 .27936

.36046 .35261 .34431 .33562 .32660 .31729 .30776 .29807

.36046 .36781 .37463 .38088 .38653 .39156 .39596 .39972

.49172 .52936 .56864 .60946 .65170 .69520 .73984 .78545

.44753 .41089 .37641 .34412 .31401 .28607 .26023 .23642

.31152 .30050 .28928 .27794 .26654 .25513 .24379 .23257

.28683 .28655 .28571 .28431 .28238 .27994 .27701 .27362

.31152 .32228 .33273 .34281 .35245 .36163 .37030 .37842

.44753 .48630 .52711 .56988 .61447 .66078 .70864 .75791

.31831 .31809 .31743 .31634 .31483 .31293 .31064 .30801

.27566 .26776 .25963 .25132 .24289 .23439 .22586 .21734

.16487 .16471 .16423 .16343 .16234 .16096 .15930 .15740

.27566 .28330 .29061 .29757 .30413 .31027 .31597 .32119

.24559 .23463 .22370 .21287 .20219 .19171 .18147 .17152

.15801 .15417 .15010 .14584 .14143 .13689 .13225 .12756

.10468 .10456 .10420 .10361 .10279 .10176 .10053 .09911

.23594 .23572 .23503 .23390 .23234 .23037 .22800 .22527

.15801 .16160 .16492 .16793 .17064 .17301 .17505 .17675

.24559 .25653 .26739 .27811 .28863 .29890 .30887 .31850

.22433 .21186 .19963 .18770 .17612 .16494 .15418 .14389

.14815 .14247 .13670 .13087 .12503 .11921 .11344 .10776

.10577 .10344 .10092 .09823 .09541 .09247 .08944 .08634

.07422 .07412 .07384 .07337 .07272 .07191 .07094 .06984

.20844 .20474 .20070 .19634 .19168 .18677 .18164 .17634

.14994 .14978 .14929 .14848 .14736 .14594 .14424 .14229

.10577 .10790 .10981 .11148 .11290 .11407 .11499 .11565

.20844 .21175 .21466 .21716 .21923 .22087 .22207 .22285

.14815 .15369 .15907 .16425 .16919 .17387 .17826 .18235

.22433 .23699 .24977 .26260 .27543 .28818 .30080 .31323
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