RELATIONSHIP AMONG PAGES, VIEWS, FIELDS AND SCREENS

Thomas E. Berendt, * Internal Revenue Service

Abstract

SQL*Forms 3.0 provides great versatility for
creating a window- like environment via pop-up
pages. However, a developer who is unfamiliar
with all of the available features and procedures
may spend some time using the trial-and-error
method in order to get pop-up pages to pop up
when and-where-they are needed. Infact, this
was the method which I used while developing
my first few forms.

This paper shows how pages and views of pages
can be used in the development of screens in
SQL*Forms 3.0. The size and placement of pages
and views are initially set in the Page Definition
Table but can be changed using the packaged
procedures, ANCHOR_VIEW, MOVE_VIEW,
RESIZE_VIEW, HIDE_PAGE and SHOW_PAGE. -

A method for setting up fields to look like page
text (via Oracle*Terminal) is also shown. This
eliminates the need to create different pages for

the sole purpose of varying text portions of a page.

Introduction

To a large extent, my early difficulties with pages,
views and screens resulted from not having a
clear understanding of what they were. For this
reason, [ will begin with descriptions for these
items. Next, I'll go over the characteristics of the
Page Definition Table. Then I'll demonstrate how
some of the packaged procedures work, along
with some examples from my own applications.
Finally, I will show, step-by-step, how to use
Oracle*Terminal to set up a video attribute which
can be used by SQL*Forms to change a field to
look like text.

Descriptions

Page
A page is basically a rectangular object which
- contains fields and text. Fields from more than

*This paper was originally presented at the 1992
International Oracle User Week Conference in San
Francisco, California, September 14-18, 1992,

one block can be on the same page. If the cursor
is positioned at one of the fields of a page, then
that page is considered to be the active, or
current, page.

View

A view is a subset of a page. It can include the
whole page or any rectangular part of a page.
The view is what wiil'appear on the screen when
its page either becomes active or is the argument
of the SHOW_PAGE packaged procedure. In the
former case, if the field at which the cursor is po-
sitioned (aka SYSTEM.CURSOR_FIELD) is not
within the view of the page, then the view will
automatically be moved so that this field will

be in the view. In the latter case, the view will ap-
pear "beneath” or "behind" the view of the active
page (i.e., the view which is displayed by the
SHOW_PAGE packaged procedure may be par-
tially or completely covered by the view of the ac-
tive page). No more than one view of a page can
be shown on the screen at a time.

Screen

The screen is the output device. It's where the
views are displayed. Several views can be dis-
played on a screen simultaneously and more than
one view will be visible if they occupy different
places on the screen. When views are displayed,
they are placed over any other views (except for
the active view) which occupy the same space on
the screen. If a view which lies over another is re-
moved, then the underlying view will reappear.

The Page Definition Table

Page characteristics are initially set in the Page
Definition Table. Figure 1 illustrates one format
of the Page Definition Table.

The page number is the first characteristic to be
designated. Beware that it cannot be changed
once the cursor leaves the row for that page in
the Page Definition Table. The only alternative is
to remove the page and insert a new one. The
Pop Up check box is used to set or unset the pop
up characteristic for the page. The pop up charac-
teristic must be set in order to use any of the
other page characteristics. Page Size sets the
width (X) and the height (Y) of the page. A page

203



can be a minimum of 1 column wide and 1 row
high and a maximum of 255 columns wide and
255 rows high. Here, the page size is 80 columns
wide by 40 rows high.

View Size sets the width (X) and height (Y) of the
view of the page. Figure 1 shows a view size of 20
columns by 10 rows. The view settings can be
changed by the RESIZE_VIEW packaged proce-
dure. View Loc is the initial position of the view
on the screen. The upper-left comer of the view
will be shown on the screen at the coordinates
entered here. Figure 1 indicates that the upper-
left corner of the view will be in column 31 of
row 7 of the screen. The ANCHOR_VIEW pack-
aged procedure is used to change these coordi-
nates. View Page indicates what part of the page
will be in the view. The coordinates entered here
will pinpoint the column and row of the page
where the view will start (i.e., the uppereft cor-
ner of the view). The View Page characteristic of
figure 1 shows that the upper-left comer of the
view will show column 60 of row 1 of the page.

The MOVE_VIEW packaged procedure is used to
change these coordinates. In other words, the

View Page characteristic and the MOVE_VIEW
packaged procedure select the part of the page to
show on the screen; the View Loc characteristic
and the ANCHOR_VIEW packaged procedure
select where to show this view on the screen.
Putting it all together, the Page Definition Table
in figure 1 creates a page where the view will
show columns 60 through 79 and rows 1 through
10 of the page (unless modified by the use of
borders, scroll bars or a title). This view will be
shown on columns 31 through 50 and rows 7
through 16 of the screen. Figure 2 shows the
screen when the form is executed. The view con-
sists of four lines of text and one 10-character
field. The border was put in via the Draw Box
feature of the screen painter, not via the Border
characteristic. The Draw Box border was in-
duded to demonstrate differences between the.
two types of borders.

The Border characteristic specifies whether or not
the view of the page will automatically have a
bptderdmwnmitsedgs.'[hisbo:derwilltake

Figure 1

‘Page Number: 1 { X ) Pop Up

Page Size: X: 80 Y: 40 ( ] Border

V§QU‘size= X: 20 Y: 10 { } Vertical Scroll Bar
eru loc: .X:. 31 Y: 7 ( ) Horizontal Scroll Bar
View Page: X: 60 Y: 1 { ] Remove on Exit

Title:

Frm: Blk:

pages one

Fld:

Trg: <Rep>

204




Figure 2

Action Edit Block Field Record Query BHelp
pages

Sample Page 1
This is rou 4
This is row 7

This is xrow 9

Count: *0

<Replace>

up part of the view, so less of the page will be
visible in the view if a border is selected. Also,
the View Page or MOVE_VIEW coordinates will
be changed from the upper-left corner of the
view to just.inside the border. This occurs so that
the left and top edges of the view of the page are
not overlaid by the border; instead, the last two
columns and the last two rows of a borderless
view are lost when a border is added. Figure 3
shows the screen after selecting the Border char-
acteristic for the page. Note that the Draw Box
border was moved inside of the new border and
that part of the bottom and right edges of the
view in figure 2 are no longer displayed.

Scroll bars are used to give information to the
operator about the relation between the view.

- and the page. If an arrow is present in a scroll bar
region, it indicates that the page extends beyond
the view in the direction to which the arrow points:
The bar itself indicates the relative position and size
of the view on the page. The scroll bars will also re-
duce the amount of the page that will appear in the
view. Figure 4 shows the screen after turning on
both the vertical and horizontal scroll bars. The
bar in the center area of the horizontal scroll bar
is near the right edge of this area; this indicates
that the view is near the right edge of the page.
The bar also takes up 3 of the 12 spaces available
in this area; this indicates that the view is show-
ing about 1/4th of the width of the page.

. The Remove on Exit characteristic controls the

longevity of a view. If this characteristic is set, -
then, when the cursor leaves the page, the view
will disappear. In this case, the view will not exist
beneath or behind other views. Remove on Exit
has no effect on a page which is displayed via the
SHOW_PAGE packaged procedure unless and
until that page becomes the active page.

The Title characteristic puts a title on the view. If
a title is not desirable, then the space should be
left blank. A title will further reduce the amount

- of the page that will appear in the view. Figure 5

shows the screen after typing "View of Page 1"
into the Title characteristic for the page. Note that

 the upper- left corner of the view no longer

appears. The position of the view on the page
went through an automatic MOVE_VIEW in
order to keep the current field visible. The verti-

~ cal scroll bar has been shrunk so.much that it is

almost useless. It does show, however, that the
page extends both above and below the view.

Chapter 10 of the "SQL*Forms Designer’s Refer-
ence Version 3.0" mentions restrictions on the
definition of some of the characteristics. If these
restrictions are violated, the form may still be gen-
erated and executed without any error messages.
However, the views may not display on the

. Screen as expected.

205



Figure 3

Action Edit Block Field Record Query Help

pages

Sample Page 1

This is row &

This is row 7

Cnount: *0 <Replac
Flgure 4
Action Edit Block Field Record Query Help
pages
i Sample Page 1
~This is row 4
v
< ' | EE
Count: *0 <Replace>

206




i

Figure. 5

Action Edit Block Field Record Query Heip
pages

View of Pége 1

<[]

"This is row 4

Lk

‘ Count: *0

<Replace>

Packaged Procedures

Packaged procedures can be used to make the
pages of a form more dynamic. ANCHOR_VIEW
moves a view from one place on the screen to an-
other. MOVE_VIEW moves a view from one sec-
tion of a page to another (i.e., a different part of
the page will show on the screen). RESIZE_VIEW
changes the size of a view. SHOW_PAGE shows a
view on the screen when its page is not current. -
HIDE_PAGE removes a non-current view from
the screen.

Let's add a KEY-HELP trigger to our form with -

the code:

ANCHOR_VIEW(1,10,8);

When the trigger is fired, the screen will look like
figure 6. The view’s "anchor" is its upper-left cor-
ner. The ANCHOR_VIEW causes the view to "lift
anchor” from its current screen location, "sail" to
the new location and "drop anchor.” In this case,

- the view has been "re-anchored” at column 10

and row 8 of the screen. Note that only the loca-
tion of the view on the screen has been changed.
The contents of the view is the same as before.

207

In order to show another part of this page on the
screen, let’s change the KEY-HELP trigger to the
following:

ANCHOR_VIEW(1,10,8);

MOVE_VIEW(1,63,5);

The view can’t be moved by much because it is

a small view and the current field must be kept
visible. When the trigger is fired, the view will

be relocated on the screen and it will show a differ-
ent part of the page. Figure 7 shows that the view of

. the page has moved down to show the text for row
" 7 instead of the text for row 4 and has moved to the

right by 3 columns. It may be inferred that the re-
striction for the View Page characteristic has been
violated here. The view starts at column 63 of the
page and the view has been defined as 20 columns
wide, so the view should extend to column 83 of
the page. However, the page is defined as only 80
columns wide! This trigger works because the Bor-
der and Scroll Bar characteristics take up a total of 4
columns of the view. Only 16 columns of the page
are actually shown in the view.

Let's rewrite the KEY-HELP trigger to show
everything in figure 1 while keeping the border,




» ~ Figure 6

Action Edit Block Field Record Query Help

pages
View of Page 1
— This is row 4
v
< N
Count: *0 <Replace>
Figure 7
Action Edit Block Field Record Query Help
pages
View of Page 1
—This is row 7
v
< — B .
Count: *0 <Replace>

208



scroll bars and title. In this case, the overall view
will be larger. Also, the view should be centered
on the screen.

RESIZE_VIEW(1,24,16); -- enlarge the view
MOVE_VIEW(1,60,1); -- move to original x,y

ANCHOR_VIEW(1.,29,5); -- center view on screen

Figure 8 shows the screen after this trigger has
been fired. The order of these statements is impor-
tant. Remember, an automatic MOVE_VIEW
occurred in order to keep the field visible within
the view. If the order of the MOVE_VIEW and
RESIZE_VIEW were reversed in the trigger,
another automatic MOVE_VIEW would occur
after the trigger’s MOVE_VIEW and before the
RESIZE_VIEW in order to keep the current field
visible within the old view size. Also, when this
trigger is fired, only the final results appear on
the screen. In order to see the intermediate results
(the resized view and the moved view), other

. code would be needed. The packaged proce-
dures, PAUSE and SYNCHRONIZE, could be
used for this purpose.

To demonstrate the uses of the SHOW_PAGE

and HIDE_PAGE packaged procedures, a second
block and a second page have been added to the
form. Figure 9 shows the page definition for this
page. When the form is executed, page 1 shows
up as in figure 5. Pressing [Next Block] makes a
field in block two current. This field is located on
page 2, so the view of page 2 is displayed on top -
- of the view of page 1, as shown in figure 10.

Figure 8

Pressing [Next Block] again returns the cursor

-to the field which is on page 1. Page 2 disappears

(instead of being overlaid) because its Remove on.
Exit characteristic is set. The screen will again

look like figure 5. Let’s again rewrite the code for -

the KEY-HELP trigger:

SHOW_PAGE(2) ;
PAUSE;
HIDE_PAGE(2);

When this trigger is fired while the cursor is in
block one, SHOW_PAGE causes the view of page
2 to be displayed on the screen beneath page 1
(as shown in figure 11). The PAUSE causes the
form to-waitfor the operator to press {Enter].

* When [Enter] is pressed, HIDE_PAGE causes

page 2 to disappear and the screen once again
looks like figure 5. When this trigger is fired
while the cursor is in block two, the only thing
that happens that the operator is aware of is the
PAUSE. SHOW_ PAGE has no effect because the
page is already displayed and HIDE_PAGE has
no effect because the current page cannot be
hidden.

More Examples

I'have an application with a screen that IRS opera-
tors use to mark which tax schedules are present
for a certain tax return. For any schedule which is
present, they enter an ‘A’. Once the schedule has
been completed, this A’ is automatically changed
to a 'D'. If the operator attempts to changed the
‘D’ back to an ‘A’ (in order to redo the schedule),

Action Edit Block Field Record Query Help
pages

- View of Page 1

v |

Sample Page 1

This is row 4

This is row 7

F— This is row 9

-l -

Count: *0

- . <Replace>

209



Figure 9

Action foRm Block Field

Trigger Procedure Image Help Options

Page Definition’

Page Number: 2 ({ X ) Pop Up
Pagé Size: X: 20 Y: 14 f X ) Border
View Size: X: 20 Y: 14 [ X ]} Vertical Scroll Bar
View Loc: X: 36 ¥Y: 5 { X ] Horizontal Scroll Bar
View Page: X: 1 Y: 1 ({ X ) Remove on Exit .
Title: Item Cost
Frm: pages Blk: two Fld: Trg: <Rep>
Figure 10

Action Edit Block Field Record Query Help

pages

Item Cost

vil*| 108 12.59

— < 109 84.95

- 110 24.99

-— 111 49.99

— 112 43.87

v | 113 67.98

114 11.43

<{{v] 115 99.99
— b

Count: *0

<Replace>

210




Figure 11

Action Edit Block FPield Record Query Help '
pages .

Item Cost

View of Page 1

<

This is row 4

'I)UONIQUUIOJ

v

v

Count: *0

<Replace>

a window pops up to confirm the change before
any data are deleted. This pop up window points
to the schedule in question when asking for con-
firmation.

Figure 12 shows the window when the operator
has changed the ‘D’ to an “A'’ for Schedule H. Fig-
ure 13 shows the same window when the opera-
tor has changed the ‘D’ to an "A’ for Schedule F
under income type 4. The code that I used was
specialized for the application but it can be
generalized to the following:

ANCHOR_VIEW(S,

TO_NUMBER ( FIELD_CHARACTERISTIC ( : SYSTEM . CURSOR_FIELD, X_
POS) ) +2,

TO_NUMBER { FIELD_CHARACTERISTIC ( : SYSTEM.CURSOR_FIELD,Y_
POS))-4); )

The window is a view of page 5. The packaged
procedure makes use of the FIELD_CHARAC-
TERISTIC packaged function in order to find out
the screen position of the current field. The win-
dow is then anchored 2 columns to the right and
4 rows above the current field. The double arrow
within the window will then point at the field in
question.

In this same application there are several pages
which are used by the operators to enter the data
for the various schedules. Each schedule is differ-
ent, but the top two lines are always the same.

They include information such as the corporation
name, the employer identification number, etc.
Rather than include these lines on every page
(and then be forced to create and populate
multiple corporate name fields, etc.), I made this
header into a separate page. I then made the
schedule data entry pages into pop up pages that
start on row three of the screen. Once the header
page is displayed, then the operator can go from
schedule to schedule and the header will remain
at the top of the screen.

Fields As Text

Displaying a field as text can be useful in certain
situations. For example, if a part of a screen is re-
quired to look like text but must show different
information at different times, then either a sepa-
rate page must be created for each variation of

“the text or this variable text can be made into ene

or more fields. The DISPLAY_FIELD packaged
procedure can be used to change the way a field
appears on the screen (e.g., bold, inverse video,
underline or a combination of these). It should be
pointed out however, that there is no display at-
tribute which can be used to display a field as
text, that is, without any special attributes.

Oracle*Terminal can be used to update the re-
source file in order to define a "text" attribute. ..
The first thing that needs to be changed is the De-

- 211




Figure 12

PORM 1118 SCHAEDULE A

1118 Name: XY3 Ilb.

SELECTION SCREEN

Bin: 999999999 Mo: 10 Yr: 91}

WARNING

SCHEDULE
Schedule R: A |[<< WILL BE lhedule J: _

' DELETED.
: PROCEED? |[E T YPES
SCEEDULE tx/uy § N N
B (Parts II/III) p|_|_|>o{_t_1-
AsmaBqrart 1) | D | _| _Io | _|_1|_
r S N RO I 2 D I
4 - =-1-

I

PRESS [Belp] TO SEE
PRESS (Do)} TO BEGIN

LIST OF KEYS FOR THIS

DATA ENTRY.

‘Count:

*0

- <Replace>

Figure 13

PORM 1118 SCHEDULE AND INCOME TYPE sch'nou SCREEN

1118 Name: XYZ INC. Bin: 999999999 Mo: 10 ¥r: 91
Schedule H: D Schedule J: _
INCOME TYPES
SCHEDULE e - ;_‘_
} I
B (Parts IX/II1) | D | _| _| P -
= : WARNING
A and B (Part I) D _ _ D
SCEEDULE
1 4 b _} _ | A j<< wiLL BE
DELETED.
e I O I PROCEED?
RN |
1 .
] - - - — 1 L 1
PRESS [Belp) TO SEE LIST OF KEYS FOR THIS SCREEN.
PRESS [Do] TO BEGIR DATA ENTRY. -
Count: *0 <Replace>

212




vice Video Attribute Definition screen of Or-
.acle*Terminal. The best solution would be to add
another device video attribute name for text, but
Version 1.0 only allows up to eight names. So, in-
stead, one of the eight existing physical terminal
sequences must be changed. The physical termi-
nal sequence is the escape sequence used to set
the display attributes for a field (e.g., "\e[m"
means turn off bold, inverse video and under-
line). I changed the sequence for "inverse bold un-
derline" because I felt it was too gaudy to be used
for anything anyway. Figure 14 shows the '
change. This is the only change in Oracle* Termi-
nal which needs to be made. The sequence for "in-
verse bold underline” is now the same as the se-
quence for "None". My experience is that "None"
should be left alone. Many of the product attrib-
ute names are mapped to "None", so changing its
sequence is not recommended. Also, trying to use
a product attribute name which is mapped to
“None" in order to display a field as text did not _
have the desired result. Instead, the result I got -
was that the field was displayed using the default
attribute. (Note: The "product attribute name" of -
Oracle*Terminal is the "display attribute name" of
the DISPLAY_ FIELD packaged procedurein -~ -

SQL*Forms.) Now, if a trigger with the following - -

code is fired in a form which is using the updated'
resource file, the field will appear with no high-

lighﬁng (that is, as text):

DISPLAY_FIELD(text_field_name, *BOLD-INVERSE-UNDERLINE
Vi )

However, this code would be confusing to any-
one who inherited the maintenance responsibili-
ties for the form. In order to make the code more
self-documenting, the display attribute name can
be changed. Back in Oracle*Terminal, the Product
Attribute Definition screen is called up and a new
product attribute name, Text, is inserted into the
list and given a description of "Text". This step
adds a new name to the list of valid product at-
tribute names. See figure 15. Next, the Attribute
Mapping Definition screen is updated, as in fig-
ure 16, to include the product attribute name,
Text. This name is then mapped to the device
video attribute name, inverse bold underline.

- This step links the new product attribute name,

Text, to the physical terminal sequence, \e[m.
TThe trigger code can now be changed to:

DISPLAY_FIELD(text_field_name, 'TEXT’ | N3

Warming: If the block containing the field is
cleared via CLEAR -BLOCK, the record contain-
ing the field is cleared via CLEAR_RECORD or

the form is cleared via CLEAR_FORM, then the

field will revert back to its default display attrib-

‘utes. (This is not mentioned in the documenta-

' Figure 14

File Product Mapping’ Déyice Helé
Device Video Attribute Definition

Device Video Attribute Name

Physical Terminal Sequence

None

inverse video

bold

inverse bold

underline - »
underline inverse

—| underline bold .

" inverse bold underline

-\e[m

\e{7m

‘\e{1lm

\e{lm\e{7m

" \e[5m
- \e{5m\e[Tm
“\e[5m\e[1m

\e[m

213




Figure 15

File Product Mapping Device Help
Product Attribute Definition

- Product Attribute Name Description
Full-screen-title Full Screen Menu Title
Alert Alert background
Menu ‘ Menu attribute
Scroll-bar-fill Scroll bar f£ill color
Sub-menu Sub menu
Button-current Button-current

Button-non-current
Field-fail-validation
Inverse

Bold

Underline

Bold-inverse
Bold-underline
Inverse-underline
Bold-inverse-underline
Text

I

Button-non-current
Field failed validation
Inverse

Bold

Underline

Bold-inverse
Bold-underline
Inverse-underline
Bold-inverse-underline
Text

Figure 16

Pile Product Mapping Device Help

Attribute Mapping Definition

° Product Attribute Name

Device Video Attribute Name

Button-current
Button-non-current
Field-fail-validation
Inverse

Bold

Underline
Bold-inverse
Bold-underline
Inverse-underline
Bold-inverse-underline
Menu-subtitle
Menu-bottom-title
Full-screen-title
Text

|

inverse video

None

inverse bold

inverse video

bold

underline

inverse bold ,
underline bold
underline inverse
inverse bold underline
None :
None

bold

inverse bold underline

214




tion for the DISPLAY_FIELD packaged
procedure.)

Summary

The purpose of this paper was to share my experi-
ences in SQL*Forms 3.0 with the reader in the
hope that he or she will travel a shorter path to
becoming proficient at developing forms.

215

Many of the characteristics of a page can be cus-
tomized in the Page Definition Table. These char-
acteristics can then be further modified as needed
via packaged procedures. From the examples
shown here, it can be seen that the pop up page
is a very useful tool. These examples are just a
beginning; much more can be done with pop up

pages.





