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I. INTRODUCTION

Survey data is often released as microdata.
Survey respondents are thus subjected to the risk of
reidentification and disclosure of confidential data,
even when identifying information such as name and
address is deleted prior to release of data. To avoid
this disclosure problem, measures of masking the data
have been proposed. They include adding random
error, multiplying by random error, microaggregating,
data swapping, random rounding, slicing and combining
subrecords. Two reseachers compared those measures
with respect to their masking capability and impact on
key statistics. Specifically, Spruill (1983) performed
an empirical study of comparison of additive random
noise, multiplicative random error, microaggregation,
random rounding and data swapping methods with
regard to the effect of masking on key statistics. She
also performed a reidentification experiment based on
the distance measure of absolute deviation and squared
deviation.

Paass(1985) also performed a reidentification
experiment based on a refined measure of
identification including discriminant analysis.  He
found from his experiment that the addition of random
error is not an effective measure and hence proposed
new masking schemes such as slicing and subrecords-
combination.

As has been shown in both studies, some measures
maintain the unbiased values of sum mary statistics
such as mean and standard deviation but others lose
the unbiasedness of the data. Also some schemes
preserve the original structural relations and hence
original causal relationships. However, others don't.
According to Paass, the combination method which is
best suitable for masking caused serious distortion of
relationships among variables. This squarely puts us in
the quandary as to whether or not we opt for
protection in spite of grave sacrifice of usefulness of
the data. From the users' point of view, maintenance
of the wusefulness of the data is the abiding
requirement for a good masking scheme.

At the Bureau of the Census, we have been faced
with masking microdata files. For masking earnings
data, a new scheme has been developed. The scheme
is a combination of random noise inoculation and
transformation. In this paper I will describe this new
measure and provide examples of application of the
measure on the earnings data. Since multiple
regression is the primary use of the earnings data, I
will discuss the theoretical effects of masking on the
regression,

It should be mentioned that the power of limiting
the disclosure by this scheme has not been fully
investigated. We are presently planning on performing
reidentification experiment using the software
developed by Paass' group.

An advantage of the scheme proposed here is, if
users are willing to do multiplication to get an
unbiased estimate of the second moment of the
original (unmasked) variables, then we can compact
the data points around the mean while the correlation
structure is not hampered. This can be done by using a
small "a" value, as to be seen later.

For simplicity, the derivation of formulae is based
on the unweighted data.
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II. NEW SCHEME

Transformation on the Variable to which
Random Noise was Added

I1.1.

As mentioned in section 1, Paass (1985) found that
the addition of random noise alone is not sufficient for
reducing disclosure risk. He also found that as more
data points cluster in a given space it becomes more
difficult to reidentify respondents. It implies that as
the number of source (original) data points which can
be linked to a given masked data point increases, the
probability of linking a masked data point to the
correct original data point decreases. The new scheme
originated from this perspective. That is, by this
transformation we try to add an additional layer of
protection to persons on the file without harming

original interrelationships among the unmasked
variables.  This 1is possible since the correlation
between variables is invariant under a linear

transformation of the variables.

Assume there are p var'iablest, some of which are
to be masked. Assuming the i*" variable is to be
m asked, define

X;: the variable to be masked

e;: random noise to be added to x;.

b]e generate ei such that e; are independent of

:) s

2
3 e ~(0, o )
and Cov(e]. s€.) = ¢ Cov(x,:,x.),
1 #j‘] #j']
assuming x; is also to be masked. In the above ¢ is a
constant a?\d- the distribution of e; can be selected
from among two distributions; normal distribution and
the distributi%n of X
For the it variable, define
Yii = Xas €55y 1=21,2,0000P5 §=1,250005050
This is tHe u)s(1l)]al a&]ditive random noise moc}%l.
For simplicity, assume np=n, Vi,

Se e L~ .
X L tX1 (u1o

Here it is

~ proposed to transform y;. by

Zij=ay"+bi v (1)
where” a anc}] b; are constants and determined in two
different ways. The first approach is to subject a and
b; to two constraints E(x;)=E(z;) and V(x;)=V(z;). The
second approach requires determination of b;j by the
first constraint E(x-)=E(z1-) but determination of a
depends on the congidentiah'ty requirement. In this
paper we adopt the first approach.

The two constraints are such that the first and
second moments of the transformed noise-added-
variable are identical to those of the original variable.

First, by subjecting the transformation to the

constraint E(xi) = E(zi), we obtain a wyt bi = uy.
Hence
b =(1-a)y, (2)

By replacing uyin (2) by its estimate
;1’ or S/']. (Yi = 71. + E}. ) » and by substituting
(1-a) ;1' or (1-a) 71. for b; in (1),

Z%j =235 +(1 'a)yi (3)
or

zU-=ay1-J.+(1-a)Yi. (4)
Based on the transformation in (3),

Vz;) = (1 + <:){a2 +[2a(1 -a) +(1 - a)z]/n} 01.2 . (5



When this equation is solved for "a" under the
constraint V(z;) = V(x;), one obtains
n -1-2¢
2 VT T (T (6)

Note, that this "a" value will make the coefficient
of o;(i.e., V(xi))in equation (5) equal to 1.
Whed n is large,

as1Visc.

11.2. Properties of Transformed Variable z., when

0? is Known
__a——-—

When o? is known, noise is generated using o?.
However, since the generated éample of noise is fim"te,
the pstimated variance of ¢ 9y is to be different from
coy. The estimated variance is going to be denoted
bycs:.
Uslnaﬂy, micé'odata is created by taking a sample.
Hence even if g5 is known to the survey takers such as
the Burfau of the Census, the ‘microdata users do not
know ¢ and hence have to estimate it. The estimate

is again Sy
1. E(Z1) = u].
This follows since E(y;) = E(x; + ey = i

and E(Yi) = e

(7)

(8)

This can be proved easily. This implies that the
sample mean of the transformed variable is the same
as that of the noise added origiral variable.

2. 2. =Y

i i

3.0 E(Z,) = u,
(1+c){a’+ [2a(1-a)
+ (1-2)21/n}e,?
5. V(Z‘i )={(1+c)a2+[2a(1-a)
+(1-2)21/nyo}

[}

4, V(Zi)

(9)

This follows since Cov(xij, 7]. ) = V(')?i ).
6. Cov(zyzs) = (1+c){a2 +[2a(1-a) + (1-a)2]/n}
i# (10

x Cov(xj»;)

This follows from Cov(zi,zj) = Cov(ayi,ayj) + Cov[(1-a)
¥ (1-a)y;1+2Covlay ;. (1-2)7 1, Covly Y )
= {1+c) Cov(xi,xj)/n and Cov(yi ,yJ. ) = Cov(yi,yj)/n.

7. Corr(zi,zj) = Corr(xi,xj)

This follows since the coefficients of V(z,), k = 1,j and
Cov(zi,zj) are identical.

8. Lett be an unmasked variable, then

Cov(zjt) =[a + (1-a)/n] Cov(x;st) (12)
This follows since Cov(y;t) = Cov(x;t) and
Cov(yi ,t) = Cov(x,i ,t)/n.

9. Corr(zt) =[a +(1 - a)/n] Corr{x;st) (13)

(11)
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This follows since V(z;) = V(x), but Cov(z;,t) =
[a+(1-a)/n] Cov(x;:t)-

10. Corr{(z;,t) < Corr{x;,t)

This follows from a < 1 and hence [a + (1 - a)/n] < 1.

11. Corr{y;,t)={1/ Vv (1+c)] Corr(x;st) (14)
This follows since Cov(y;,t) = Cov(xj,t) and V(y;) =

(1+C) V(X]').

The correlation between y; and t is always less than
the correlation between x; and t.

12. Correlation between z; and t is asy mptotically
the same as the correlation between y; and t.

This follows since when n is large, Corr{z;,t) = a
Corr(x;;t) and a = 1/V 1+c . Note that when n is large,
(n-1-c)/(n-1) = 1 and hence from equation (6), a =

1/ VTIHE.

I1.3. Properties of Transformed Variable z., when

o2 is Uriknown

In practice, aZ is not known, hence qz is estimated
from the sample (estimate denoted by s¢ as ysual), gnd
then random noise is generated using this s¢, If s<is
calculated Erom the noise e, it will not be exactly the
same as s¢ due to the sampling variability of e.
Herlcf, we denote the estimated variance of noise
by s”.

Taking a respondent sample and adding noise can be
interpreted as a two stage sampling.

In Stage 1, n respondents are selected from a
population of size N and observations are made. From
the observations, sample statistics are calculated (This
is the usual situation, but if a whole population is
observed, population statistics are calculated).

In Stage 2, noise sample is generated using the
statistics and noise is added to the observed values.
From this perspective, the mean and variance can be
interpreted as follows. Denoting the respondent
sample by 8 .

Efy:) = E[E s + 85 ]= E(x;)=us.
The ag)]\)/e fo]]cg)\f}s sien]gles)E(ei[a())H:) O.uhence,

E(z;) = ELE(z;|¢)] = Elax; + (1-3) X3 ] =
V(ys) = VLE(x; + e5l$)] + ELV(x; + &58))

= V(x;) + E(csg) = (1+C)0?,

1

which follows since V(x; + e;|) = V(e;|$) = cs]?.
Therefore,

W(z;) = ELay; + 1-0) 7, 181} E{ay;
+(1-0) 7,18 1)
= Vax; +(1-a) 71. ]+ E{V[aei +(1-a) 31. ]} .
But the second term in the above expression reduces to
E{csfa2 + cs?[Za(l-a) + (1-a)2]/n}

={a2 +[2a(1-a) + (l-a)z]/n}c%? .
Hence the above variance of 2z reduces to the variance



in (6).

Similarly, the covariance between z and z., and the
covariance between z; and t in this case redu]ce to the
covariances in the previous case.

IT.4. Impacts of Masking on Regression

Without loss of generality, the variances can be
assumed to be homogeneous since heterogeneous
variances can be changed to the homogeneous by
proper transfomration of variables (see p. 221 of
reference 4).

Case 1. When o2 is known

Smith considered the effects of masking by random
noise on the regressiog when all the variables are
masked and when o~ is known for generating
random noise, but the variance estimate s< is used
for the regression. Here we deal with the problem
from a broader perspective under the same set of
conditions.

Define X' = (x,-,xz,...,x )s a vector of p varjables, x*
is a realization of 8( Define Y, Y and Z,
similarly. Note that Y is a vector of variables, at
least some of which are masked and Z is a vector of
transformed variables. Define E(X) = y and V(X) =
V. Then E(Y) =y and V(Y)=(1+c) V.

Tq build a regression of X1 on X2' = (xz,x3,...,xp), X,
X", and V are partitioned as follows.

X =(X 1) * =(X1*)
’ * s
X X2
v

2
n v
. =( 1 and V= V11 V12
| 21 22
Then
* _1 *
E(Xq|Xp=X,) = uy +Vio Voo (X, = u,)
11727 %2 17 "12 722 2 2

In the above y 1 - is the intercept

21 VieVee v
and V12V22 is the vector of coefficients.

Theorem 1. If all the masked variables have the
same first two moments as the unmasked variables
then the regression coefficients and intercept
based on the masked data are on the averaye
identical to those of the unmasked data.

Proof. Proof follows from the fact that the inter-

v V-l u
12722 "2

remain the same throughout masking.

cept yu, - and the coefficients

Vi2V22

The above theorem applies to the data masked by
our scheme.

Theorem 2. If all the masked variables have the
same first moments but their second moments are
proportional (at the same rate) to those of the
unmasked, the regression coefficients and
intercept based on the masked variables only are
on the average identical to those of the unmasked
data.
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Proof. E(Y) = E(X) = y and the new variance and
covariance matrix is k V, where k is a constant.
The new coefficients are kVio* (kV )'1 =
ViaVs -1 which is the same as that Tor the
unmasked.

This theorem applies to the data masked by the
random noise approach.

If the covariance between two unmasked variables
is maintained after masking, but the covariance
between the masked and unmasked is not, then an
adjustment of the covariance to make it unbiased is
required to preserve the same correlation coefficients,
on the average. The covariance between the masked
and unmasked variables in our scheme is [a + (1-a)/n]
times the covariance between unmasked variables.
Thus the covariance must be adjusted to insure
unbiasedness of the coefficients and intercept. On the
other hand, the correspondjng covariance in random
noise approach is unbiased .../, but the variance of the
masked variable is (1 + c) times that of the unmasked
variable. Hence, this variance needs to be adjusted.

Lemma 1. If the unbiased variance-covariance
structure is maintained after masking, but the
means lose unbiasedness, then the regression
coefficients based on the data including masked
variables, on the average, would remain identical
to those based on unmasked data, but the intercept
would not.

Proof. By inspection of the formula of intercept.

This lem ma can be applied to the data generated by
the random noise approach. If the masked data is
adjusted before inputting in the computer to make
the sample variance and covariance unbiased, the
resulting sample means will become biased. Thus,
the intercept of the regression based on this data
will be biased.

The above two lemmas can be combined and
rephrased in terms of correlation coefficients.

Lemma 2. If the means and correlations of the
masked variables are unbiased, (naturally or by
adjustment), then the regression coefficients and
the intercept of the model fitted on the wholly or
partly masked data will be, on the average, the
same as those obtained from the unmasked data.

Theorem 3. If all variables in the regression model
are masked and the second moments of the masked
variables are the same as those of the unmasked,
then the residual error variance of the regression
will be the same as that of the regression based on
the unmasked.

Proof. V(x,|X,)=Viq - Vi,V v

Since all thle v%rianclels of %Ee 2lr%askegllvar'iables are
identical to those of the unmasked, V(lezz) will
be the same as V(xllxz).

This theorem applies to the data masked by our
scheme, but it does not apply to the data masked by
the random noise approach. The residual error
variance based on the latter is (1+c) times that
based on the unmasked data.



Lemma 3. If the variables in the regression, all or
part of which are masked, have the same second
moments as the unmasked, then the residual error
variance based on the data will be the same as
that based on the unmasked data.

Proof. Omitted.

This applies to the data, on the average, part of
which is masked by our scheme and the covariance
between masked and unmasked variables is adjusted
to be unbiased.
Define
Xop1= Xo o o o

Ve
. LN
. . 2
. -

2n 2 pn Xp
Theorem 4. Under the same condition as in
Lemma 3, the standard errors of regression

coefficients based on the data will be the same as
those based on the unmasked data.

Proof. In general, the variance of the coefficient
can be expressed as

ol (x'x)" !

where y is defined above. The proof follows from
inspection of the above variance.

Theorem 5. The variance of the intercept based
on the data having the same variance-covariance
and means as the unmasked data is identical to the
variance of intercept based on the unmasked data.

Proof. The variance of the intercept is
o [1/n + x'(x'x) " 1x1

The proof follows from inspection of the above
variance formula.

The data masked by our scheme satisfies the above
theorem but the data generated by the random noise
approach never, even with adjustment, does.
Case 2. When 02 is not known

When 02 is not known, 2 is used to generate noise,
hence due to the sampling error of noise, the actual
variance will be different from s<. Only r%peated
generation sz noise and calculation of s° (more
precisely cs ) infinitely many times will result in
their average equal to s®. This has significant
implications on the regression coefficients.

Denote the regression coefficients based on 02

by 6 Note that

b will be calcultated using sample variance which is
2

by(s,szbybandsA2

a mixture of $¢ and 52 . For example in the random
noise case, if noise whose variance is 1/2 of 52 is

used then the resulting sample variance will be
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2+ .5 gd .
Hence the regression coefficients will be estimated
based on this type of variance. If the conditions for
unbiasedness of b seen in the previous theorems and
lem mas are met, then

ECE(D|& )] = E(b) = B.

This means under the suitable conditions b can be
unbiased.

E(b) =

II1. EXAMPLES OF APPLICATION OF THE SCHEME

The scheme proposed here was tried for masking
earnings data. A separate scheme was also
investigated, namely, the addition of random normal
noise with zero mean and standard deviation equal to
1/2 the observation. This scheme is also included in
the comparison.

Random numbers were generated using a subroutine
in IMSL called GGNSM, This routine generates
standard normal multi-variates which follow a
specified correlation structure among the variables.
Using these variates random noise was generated.
Also RLMUL in IMSL was used to run regression. Box-
and-Whisker plot was obtained by using IMSL, too.

Table 1 shows means of 3 unmasked as well as
masked variables. In our scheme, three versions were
tried by varying the amount of variance of noise, i.e.,
25%, 50% and 100% of the variance of the unmasked
variable were tried.

Due to the sampling variability of the mean of noise
the sample means in the table are all different from
the sample mean of the unmasked.

Correlation coefficients between variables were
calculated (see Table 2). None of the correlations
obtained from our data is significantly different from
the original ones. However, both coefficients obtained
from the other scheme are significantly different.

Table 3 has the results of the multiple regression in
which all the variables were masked. Our data (with
V(e) = .25 V(x)) provides more reliable results.

Tables 4 provides the MSE, F values and the
variance of t;e dependent variable explained by the
regression (R¢). Our data gives MSE values close to
those of the unmasked, but the other data does not.
The percentage of variance is higher in our results
than under the other scheme.

IV. CONCLUDING REMARKS

So far properties of the new masking scheme have
been considered and some examples of application
have been shown. However, the power of limiting the
disclosure by this scheme has not been tested. We are
planning on embarking on the experiment using Paass'
software which was developed for his reidentification
study. It should be noted that as far as our scheme is
concerned, the probability of reidentification can be
manipulated by using the “a" value. It is possible since
by lowering the "a" value, we can shift the weight
toward the mean and thus reduce the reidentifiability
of the respondents. However, since the correlation
structure can be maintained, if necessary by
adjustment, the regression can be run on the data
without adverse effect.

A ot more questions remain to be answered
concerning this scheme. These will be investigated as
soon as time permits.



Yy n;# n, then the a values in (6) would be
different for each i.

2/ Tnis is the model Spruill used for her experiment.

However, this can be changed by using correlated

noise, which ensures unbiasedness of the correlation.

This latter approach was used in my experiment.
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APPENDIX
Table 1.--Comparison of Means, n=2000 Table 3.--Regression Coefficients
- All vars Masked
Item Var 1 Var 2 Var 3
- o *
Unmasked 852.44  903.90  1099.68 Item Unmasked | Ours Other
Qur Scheme 1 876.77 939.48 1134.33
Our Scheme 2* 886.85 954.22 1148.71 X 01 02 01
Our Scheme 3 901.12 975.03 1169.00 x% _.18 _.18 '23
Other Scheme 838.06 962.47 1091.67 X 68 ‘69 65
Slope 972 937 951

Qur scheme 1,2,3 corresponds to the scheme with
V(e) is 25%, 50%, and 100% of V(x) in that order

Table 2.--Correlation Coefficients

Var 1 Var 3
Item Vs Vs
Var 2 Var 4
Unmasked 74 .76
Qur Scheme 1 74 .76
Our Scheme 2 .74 .76
Our Scheme 3 .74 .76
Other Scheme .68 .82
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* Qur scheme 1 is used

Table 4.--ANOVA Based on Regression - All
Variables Masked

Item Unmasked Ours Other
MSE 6796.5 6781.5 7287.1
F 508.16 522.42 411.24
R2 43.30 43.98 38.20






