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The smoothing of empirical sampling distribu One function that we particularly liked was

tions from grouped data is very old topic in known as the Karup-King Osculatory Interpolation

economics and statistics The modelling of Method This method is form of piecewise

income and wealth distributions has had curvefitting that joins the pieces so that they

particularly long history come together smoothly in the sense that the

Economists have typically applied global derivatives from the right and left are equal
models to the sample cumulatives for income and

wealth notably of the log normal or Pareto type After completing the life tables we thought
These global fitting procedures are attrac these new methods which were programmed might

tive because they can be used in behavioral be generalized and applied to income data This

context once the parameters are estimated The was done and the results were reported in

problem with such procedures however is that paper given at these ASA meetings in 1977

despite their behavioral motivation they simply We were still looking at percentile estimation
dont fit U.S empirical data particularly well from which some fairly good results were ob
over the whole range of many income or wealth tamed They also satisfied certain bounds that

distributions had been set by Gastwirth and Glauberman at

Local fitting procedures unlike global ones about that time and they outperformed any of

can be made to calibrate the U.S data exactly the known competitors of that era

and in smooth way Osculatory interpolation After that nothing really happened on this

is one such procedure which as we will see has issue for quite while Then few years ago
many useful properties the Supply Siders conjectured that cutting tax

The present paper describes recent applica- rates would increase the amount of taxes paid by

tions and extensions of osculatory interpolation the upper income groups By that time we had

methods at the Internal Revenue Service The moved to the Internal Revenue Service and so we

material is divided into five sections First got the job of developing good time series on

we provide little background concerning our the proportion of taxes paid by the top one

interest in and use of the osculatory interpol percent top five percent etc of all

tion approach This is followed by formal taxfilers This was different problem from

statement of some of the problems posed by using those tackled in 1976 and 1977 We needed

grouped income data as well as brief descrip- really good estimates of totals and not just

tions of three variations of the methodology for percentiles

estimating percentiles The next section Since we had all the microdata we could have

provides further extensions of the interpolation simply gotten out the old files sorted them and

functions and the details of new approach retabulated the already published data or we

particularly useful for estimating cumulative could have tried to extend the 1977 results to

totals This is followed in the fourth section this new problem In .the end we did both
by some results The final section makes few little of the first and lot of the second

concluding comments and discusses future plans The next two sections describe the interpolation

approches we considered

BACKGROUND ON APPROACH

PROBLEM STATEMENT

Our initial interest in the osculatory inter

polation of grouped data arose about 20 years typical grouped income data problem consists

ago at the Office of Economic Opportunity OEO of i1 .. classes each having estimated

when we tried to improve on the methods then proportions

being employed by the U.S Bureau of the Census

in estimating income percentiles from tabulated where

data in the Current Population Survey 11
We spent lot of time with global fitting with the being the weighted number of cases

procedures especially 3-parameter log normal
th

fits of the bottom tail of the income distribu in the interval and mean incomes of all

tion An algorithm was created for iteratively

fitting the 3parameter log normal using an
incomes falling in the income size class

information theoretic approach but the fits

werent usable in fact the residuals had The estimates required in this setting often

problems both within years and over time are--

Later on in the middle 70s we were working

together at the Social Security Administration given an income cutoff find

on series of problems involving mortality the proportion or the total aggregate
estimation More specifically we were looking income of the population having income

at what are called estate tax multiplier wealth less than or equal to or

estimates In order to do one part of this

research we had to develop life tables for given proportion of the population

social security earners so we started to study

the tools used by demographers and came across
i1

lot of literature on local smoothing functions find the income cutoff Ixj_1x the
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total aggregate income or the propor or the shaded and the horizontal and verti
tion of total aggregate income Lorenz cal striped sections equals the area of

curve attributable to this population interval II Thus since in this diagram

dFL and dFR are always positive we

Traditionally in this formulation the desired can treat them as probability density
value is interpolated based on the pattern functions for the income distribution over

exhibited by sequence of ordered pairs the interval of interpolation

pj x1 or pjxj The Karup-King interpolation of the income

distribution Fx in the interval is ob
but not both Indeed the approach taken in the tamed as weighted average of the two

1977 paper was of the first type cumulative interval distribution functions

In the next section we will see that the new FL and FR To be specific at any

procedure is an advance in that it carries out point in the interval x2 it

the interpolation using sequences of ordered can be shown that the Karup-King distribu
triplets tion function is given by the expression

Pj
_xFL 1FRx

To motivate the new technique however it is
X2X1 21

desirable to begin by looking at the basic Since FL Cx and FR Cx are both quadratic
KarupKing interpolation gradually building in functions in Fx describes cubic interpo
complexities This is done below

lation curve This will always be the case in

any interval other than the first or last For
Monotonic Karup-King Osculatory Interpolation the first and last intervals where dFL and

dFR cannot both be defined the KarupKing
Consider hypothetical distribution of say

interpolation curve is simply quadratic
adjusted gross income three classes of which

since it equals either FR initial interval
are shown geometrically below

or FL terminal interval

Schematically we have shown that the area

under the Karup-King density function dF is

related to the appropriately weighted areas

under dFL and dFR as
dF

dFL dE
dFp

___
The horizontal axis provides to scale the four

-x
dollar income cutoffs x0 x1 x2 and x3 which XZ

define the size classes II and III The

areas of the histograms which lie above the axis Several basic observations on this second

are drawn to be proportional to the percentages chart may be worth making
of returns in the corresponding classes At the

top of each histogram we have labelled the All of the areas under dFL and dFR and

interval midpoints i.e m1 m2 arid m3 dF are the same This means that the

original given series of data points are
We are now ready to define the Karup-King reproduced exactly in the interpolation

procedure for interpolating within any interval

other than the initial or terminal ones Con The shaded area under dF is less than the

sider size class II in the graph shaded area under line dFL but greater
than the shaded area under dFR This

To begin with let us define two line illustrates another fact about the Karup
segments dFL and dFR by connecting the King interpolation curve namely it

points m1 in2 and m3 as is done above always lies between FL and FR

Now dFL and dFR have an interesting dF intersects both dFL and dFR at two

property namely that for the middle points each It crosses dFL at the

interval the area between each of them beginning or left-most point of the

and the horizontal axis is the same as the interval and at point 2/3 of the

rectangular area over the interval That way into the income class Similarly
is the area under dFL or the cross dF and dFR coincide at point 1/3 of

hatched shaded and vertical striped the way into the class and at the

sections equals the dimensions of interval rightmost point in the interval

II Similarly the portion under dFR These additional points of juncture round
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out the curve giving smoothness to the juncture of the intervals in such

overall income distribution at the intersection way that the absolute difference of

of any two interpolation curves for adjoining the slopes was minimum

intervals
If dFR was negative at any point in

classes II and III then modified

density dFR was defined in manner

To illustrate situation where the KarupKing similar to that for dEL
procedure will not yield monotonic curve

let us examine variation on the first graph Only when dFL and dFR both lay above the

horizontal axis in the intervals over which they

without modification

were defined did we use the KarupKing procedure

In the particular case we examined the

modified technique yielded dFL and dFR as

shown below

cjFL

I-//

dFR

dF

0x1

Everything is defined the same way as before
___________

except that dEL can take on negative values

and therefore is no longer density function

over the interval x2 Furthermore

since Fx decreases in the region where dF lies price has been paid for adopting the niodi

under the horizontal axis the resulting fied procedure The cumulative distribution

KarupKing curve is not monotonic function Fx will no longer be differentiable

at the points of juncture as before It will

however be continuous and strictly monotonically

at yedFL
dF

increasing obviously too the resulting dF will

dFR

dEL
dF

dF

be nonneg

______ZI
Modif led Karup-King Osculatory Interpolation EXTENSIONS AND NEW APPROACHES

Our solution in 1977 to cases where the

Karup-King yielded nonmonotonic distribution
The approaches we have been considering are

all of the form
function was to proceed as follows

If dFL was negative at any point in the
Fx laFLx FRX

size classes and II then modified

density dFL was defi ned which instead .th ii
of being single straight line consisted Xi X1.1

of two straight lines--one for each inter
val such that

where FL and FR are quadratic and adjusted

one line passed through m1 and one
to be monotonic Moving from an interpolation

line passed through m2
function based on the ordered sequence

p1 x1
to one based on the sequences

both lines lay above the horizontal means essentially that we need

axis in the interval in which they to impose additional constraints related to

were defined and

x1 In particular we require the interpola

the two lines intersected at the tion function to reproduce the px11
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for each interval in such way that dFx0 for all xc the minimum

under uniform linear and quadratic density
the curve generated is smoothly connected with

functions is 1/2 1/3 1/4 respectively and
similarly constructed curves over adjoining

the maximum is 1/2 2/3 3/4 respectively
intervals

See Figure
Two ways of extending the 1977 work were

considered First we looked at positive

polynomial functions for FL and FR that were
Figure A.Minimum and Maximum Under Uniform

simply degree higher Second it also turns Linear and Quadratic Densities
out to be possible to use generalized version

of the Pareto to obtain FL and FR The dFx
details motivating these approaches are worked

3.0 3.0
out below some results based on our data here

at IRS follow in the next section

Polynomial Fitting

For our initial choice of curves we con- 2.0
2.0

sidered the class of positive polynomials for

FLx The Lagrange interpolating polynomial Mm Max

is the polynomial of degree n-i which agrees

with given function at distinct points or
constraints Hence we could use cubic

1.0 i.o

function

FLx b0 b1x b2x2 b3x3

The coefficients b0 b1 b2 andb3 are deter ________________
mined by solving the following simultaneous 0.0 0.0

0.0 0.5 1.0 0.0 0.5 1.0
equations reflecting the four constraints

j2 b0 b1 x_2 b2x12 b3x.2

.3

b0 b1 b2xj1 b3x1_1 In our AGI data for 1984 see Figure
lies in fairly narrow range before declining

b0 b2x.2 b3x3 sharply from 0.5 after the 95th percentile or
so this seems to indicate that the new method

may yield negative values for the density in

some part of the interpolation interval
PjXi

td FLt resultingunless adjusted-in decreasingii cumulative distribution function

.b1xm -xj_i
b2xj3-x1

Figure B.--1985 Individual Returns

x1 ________________________________________________

Cumulative Percent Class
AG Size Class Percent in Mean Value

Similarly we could construct FR and Interval in fl

indeed finally obtain an interpolation formula Under $1000 2.2 2.3 574 .57

for Fx by combining FL and FR using to $1000 under $2.000 5.5 3.3 1500 .50

$2000 under $3000 9.0 3.4 2491 .49

yield $3000 under $4.000 12.3 3.3 3500 .50

$4000 under $5000 15.6 3.3 4503 .50
$5.000 under $6000 18.9 3.3 5493 .49

$6000 under $7000 22.1 3.3 6491 .49Fx a0 a1x a2x a3x ax $7000 under $8000 25.3 3.2 7502 .50

$8000 under $9000 28.8 3.4 8508 .51

x1_1 xi

$40000 under $50000 920 66 44455 45
$50000 under $75000 97.5 5.6 59288 .37

Interpolation methods employing the class of
$75000 under $100000 98.8 1.3 85028 .40

polynomi als given in expression above can $100000 under $200000 ... 99.7 0.9 131082 .31

$200000 under $500000 ... 99.9 0.2 289751 .30again run into problems of monotonicity Let
$500000 under $1000000 100.0 0.0 669994 .34

x1...1 kx_x_1
Pareto Fitting

In order for dFx in the interval

x1 then must lie within certain lim- As an alternative to the positive polynomial
its i.e we investigated the Pareto distribution

kmax Fx with

which depend on the interpolation function being which has often been used in fitting the upper
fit For example it can be shown that for tail of income and wealth distributions
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The Pareto seems intuitively to be suitable Percentile Estimates Table

density for cases where the polynomial function

fails because of small In fact it can be For the dollar cutoffs or percentile estimates

shown that there is always positive Pareto Method as expected behaves quite well over

dFx no matter how small becomes To illus the bulk of the income distribution becoming

trate this Figure shows values of the Pareto however unreliable in the extreme upper tails
Method II behaves generally better than Method

although it too becomes unreliable in the

Figure C.-Dispersion Parameter of Pareto for extreme upper tail of the adjusted gross income

Selected Values of and Interpolation Interval AGI distribution Method III does very well
as expected in the upper tail and fits about as

Interpolation well as Method II in the lower part of the dis
Interval as Multiple of Lower Class Limit tribution

0.5 1.5

Aggregate Estimates Table
0.25 7.49 3.86 2.63 2.00 0.82

0.20 10.16 5.32 3.68 2.85 1.29 For the aggregate estimates within each AGI

0.10 20.96 10.94 7.59 5.91 2.82
income interval Method does fairly poorly

0.05 41.00 21.00 14.33 11.00 4.99 It consistently in these data overestimates

the aggregates nearly everywhere Method II

does extremely well except in the upper tail
where as with the percentile data its per-

dispersion parameter by selected values of formance continues to be unreliable Method III

given the interpolation interval as multiple achieves really phenomenal results with these

of the lower class limit Figure presents data justifying the heavy reliance we have

values of for each selected value placed on it in looking at the Supply Siders

questions Our data by the way do show the

predicted effects although not necessarily in

Figure D.Interval Proportion for Selected the magnitude expected See Figure below
Values of Dispersion Parameter of

Pareto and Interpolation Interval
Figure E.-Federal Income Tax Payments

Interpolation Interval

as Multiple of Lower Class Limit

0.5 1.5
Tax Taxes Paid Percent of Total Paid

1.25 0.425 0.373 0.334 0.304 0.204
Year Rich Poor Rich Poor

1.50 0.416 0.359 0.317 0.285 0.181
1981 $51.0 $21.0 18.05% 7.45%

1.75 0.408 0.346 0.301 0.267 0.161
1982 53.6 20.3 19.41 7.35

2.00 0.400 0.333 0.286 0.250 0.143
1983 54.1 19.5 19.93 7.17

2.50 0.384 0.309 0.257 0.219 0.114
1984 62.7 21.9 21.10 7.35

3.50 0.353 0.264 0.208 0.169 0.077
1985 72.1 23.1 22.13 7.10

Income taxes after credits in billions of
Since our method requires four constraints dollars 1985 data are preliminary

the Pareto cannot be used as such but
Top 1% of taxpayers measured by adjusted

polynomial with negative exponents will behave
gross income

almost just like Pareto We selected n1.5 Lowest 50% of taxpayers measured by adjusted
2.5 3.5 from the chart and solved the Lagrange

gross income
equations as above this time obtaining for Source Internal Revenue Service
FL the foYTh

Reprinted here from

.1.5 2.5 3.5

FLx b0 b1x b2X b3X CONCLUSIONS AND AREAS FOR FUTURE STUDY

Again using the procedure outlined earlier for Four general remarks might be made about the

the positive polynomial fit similar ex direction that this work has taken so far In
pression to expression can be obtained for particular some comments are in order about

FR and finally combining the Pareto where we have been and where we should be going
versions of FL and FR we can derive At this point we are reasonably happy with the

Pareto version of expression improvements that have been made over the 1977

results The new polynomial fits especially
RESULTS AND IMPLICATIONS those based on the Pareto calibrate the data

very nicely We have more work to do on the

Tables and provide some results on the problem however For one thing there is

three interpolation methods that we have dis- growing literature in this area including

cussed-the initial 1977 approach Method paper given at these meetings Un
the positive polynomial generalization Method doubtedly the results of others may be worth

II and the Pareto or negative polynomial programming and testing to see if there are

generalization Method III further improvements worth making
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Our initial attack of over 20 years ago in cussant the new procedure advocated here
which we attempted to fit parametric forms which is based on means may not be ap
globally was failure but as we have seen propriate for the CPS because of data

good guess on the parametric form can be quite problems such as rounding See for

helpful when fitting wide intervals and sparse example Scheuren 1980 Appendix

data Clearly for example the Pareto did very II Placement of Survey Wage Class In-

well in the upper tail of the AGI distribution tervals in the Presence of Rounding

This brings us full circle from global parametric Error Studies from Interagency Data

approaches which dont work to local para Linkages Report No U.S Department of

metric approaches which do It suggests we look Health and Human Services Social Security

very hard at our data to see if other parametric Administration pp 241275 The original

forms might work even better than the Pareto 1977 Karup-King approach may have merit in

Certainly the suggestions in Hoaglin et al CPS context however especially in long

for heavytailed distributions are wciFfhy of intervals away from the median

study with tax data The approach we took was special case of

While improvements in the basic constraint what would eventually be called the EM

equations can be made and are being worked on algorithm See Dempster A.P Laird

methods for dealing with openended classes and Rubin D.B 1977 Maximum Likelihood

really cannot be effectively approached using From Incomplete Data via the EM Algorithm

the methods being developed unless strong Journal of Royal Statistical Society Ser

distributional assumptions are made We have 39 pp 1-38

already looked at this problem and will talk The practical problem of looking at changes

briefly in later paper at these meetings in income and poverty over time which

about JamesStein approach to smoothing the started us on this quest was partially

openended interval solved in Scheuren 1973 Ransack

One final point the discussant Bob Fay ing CPS Tabulations Applications of the

suggested that the sensitivity of the inter Log Linear Model to Poverty Statistics

polation to sampling error be investigated Annals of Economic and Social Measurement

While we do not feel this is that important in 2/2 pp 159182 The demise of 0E0

number of our applications because of the strati ended our remaining interest at least at

fied samples we use nonetheless the challenge that point
is appropriate and deserves study and we thank Oh H.L and Scheuren 1976 Some

him for it as well as his other helpful comments Preliminary Results from Validation

Study of the Estate Multiplier Procedure
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In addition to Bob Fay the authors would like pp 65O54 Also see Scheuren and
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